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Abstract
Recently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video repre-
sents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing 
on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level elec-
tro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain 
network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and 
musical feature during freely listening to music. We used a data-driven method that combined music information retrieval 
with spatial Fourier Independent Components Analysis (spatial Fourier–ICA) to probe the interplay between the spatial 
profiles and the spectral patterns of the brain network emerging from music listening. Correlation analysis was performed 
between time courses of brain networks extracted from EEG data and musical feature time series extracted from music stimuli 
to derive the musical feature related oscillatory patterns in the listening brain. We found brain networks of musical feature 
processing were frequency-dependent. Musical feature time series, especially fluctuation centroid and key feature, were 
associated with an increased beta activation in the bilateral superior temporal gyrus. An increased alpha oscillation in the 
bilateral occipital cortex emerged during music listening, which was consistent with alpha functional suppression hypothesis 
in task-irrelevant regions. We also observed an increased delta–beta oscillatory activity in the prefrontal cortex associated 
with musical feature processing. In addition to these findings, the proposed method seems valuable for characterizing the 
large-scale frequency-dependent brain activity engaged in musical feature processing.

Keywords Frequency-specific networks · Music information retrieval · EEG · Independent components analysis

Introduction

Understanding how our brain perceives complex and contin-
uous inputs from the real-world has been an attractive prob-
lem in cognitive neuroscience in the past few decades. Brain 
imaging technology provides an opportunity to address this 
issue. However, revealing brain states is generally more 
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difficult during real-word experiences than those recorded 
brain activities during resting-state or simplified abstract 
stimuli like controlled and rapidly repeated stimuli (Hasson 
et al. 2010; Malcolm et al. 2016; Spiers and Maguire 2007). 
The question of how to disentangle stimuli-induced brain 
activity from spontaneous activity still remains open for sci-
entific research due to the complexity of natural situations. 
In the present study, we attempt to formulate an approach 
with several analysis techniques including spatial ICA, 
source localization, acoustic feature extraction, and temporal 
correlation to examine the elicited oscillatory brain networks 
using ongoing electroencephalography (EEG) recorded dur-
ing music listening.

Recently, the brain state under the naturalistic stimuli 
including music and movie has been investigated through 
functional magnetic resonance imaging (fMRI) (Alluri et al. 
2012a, b; Alluri et al. 2013; Burunat et al. 2014, 2016a, 
b; Liu et al. 2017; Toiviainen et al. 2014), MEG (Koski-
nen et al. 2013; Lankinen et al. 2014) and EEG (Cong et al. 
2013a, b; Daly et al. 2014, 2015; Schaefer et al. 2013; Sturm 
et al. 2015; Zhu et al. 2019, 2020). Alluri et al. explored the 
neural correlates of music feature processing as it occurs in 
a realistic or naturalistic environment, where eleven partici-
pants attentively listened to the whole piece of music (Alluri 
et al. 2012a, b; Burunat et al. 2016b, a). They successfully 
identified brain regions involved in processing of musical 
features in a naturalistic paradigm and found large-scale 
brain responses in cognitive, motor and limbic brain net-
works during continuous processing of low-level (timbral) 
and high-level (tonal and rhythmical) acoustic features using 
fMRI. Burunat et al. studied the replicability of Alluri’s find-
ings using a similar methodological approach with a similar 
group of participants and found the processing mechanisms 
for low-level musical features were more reliable than high-
level features (Burunat et al. 2016b, a). Unfortunately, all 
BOLD measurements by fMRI are to some degree con-
founded since they are indirect assessments of brain activ-
ity; they relate to blood flow and not to electrical processes 
and are therefore limited by poor temporal resolution due to 
the protracted hemodynamic response (Brookes et al. 2014; 
Li et al. 2019). After that, Cong et al. used an analogous to 
correlation analysis technique to investigate neural rhythms 
based on ongoing EEG data collected during listening to 
same music stimuli (Cong et al. 2013a, b; Wang et al. 2016). 
They found the theta and alpha oscillations along central and 
occipital area of scalp topology seems significantly associ-
ated with high-level (tonal and rhythmical) acoustic features 
processing. Also, many other studies tried to examine the 
neural underpinnings of music listening based on sensor-
level EEG data (Jäncke et al. 2015, 2018; Markovic et al. 
2017), in which different frequency bands were extracted 
using time–frequency analysis methods and further ana-
lyzed separately (e.g., event-related synchronizations and 

oscillatory power changes). Those studies showed the influ-
ence of different music listening styles on neurophysiologi-
cal and psychological state interpreted by brain activation. 
Some sensor-level EEG studies examined the physiological 
correlates of continuous changes in subjective emotional 
states while listening to a complete music piece (Mikutta 
et al. 2012, 2014). Compared with sensor-level EEG analy-
sis, recent studies adopted a mathematical approach (called 
sLORETA–ICA) combing source localization techniques 
with ICA to detect the independent functional networks 
during music listening (Jäncke and Alahmadi 2016; Rogen-
moser et al. 2016). Although the aforementioned studies 
investigated the oscillatory activation or functional net-
works during music listening, the specific networks emerg-
ing from dynamic processing of musical features are not yet 
fully understood (Meyer et al. 2006). For example, there 
is evidence indicating that timbral feature processing was 
associated with increased activations in cognitive areas of 
the cerebellum, and sensory and default mode network cer-
ebrocortical areas, but musical pulse, and tonality process-
ing recruited cortical and subcortical cognitive, motor and 
emotion-related circuits (Alluri et al. 2012a, b; Meyer et al. 
2006). Thus, we aimed to examine the electrophysiological 
underpinnings of these networks emerging from dynamic 
processing of musical features.

Independent component analysis (ICA) is a well-estab-
lished data-driven approach increasingly used to factor 
resting-state fMRI data into temporally covarying, spatially 
independent sources or networks. By contrast, in the anal-
ysis of EEG/MEG data, ICA has mainly been applied for 
artifact rejection. However, spatial Fourier–ICA was pro-
posed for data-driven characterization of oscillatory brain 
activity using EEG/MEG data. Compared with other ICA 
method applied to the context of music listening, spatial 
Fourier–ICA used in the current study can automatically 
extract narrowband oscillations from broadband data with-
out having to manually specify a frequency band of interest. 
So far, spatial Fourier–ICA has already been proved to be 
fruitful in gaining insights into electrophysiological under-
pinnings of networks (Kauppi et al. 2013; Li et al. 2018; 
Ramkumar et al. 2014).

By applying spatial Fourier–ICA in combination with 
acoustical feature extraction, this study aims at probing the 
spatial–spectral patterns under music listening. Particularly, 
the current study attempts to provide an analysis framework 
for identifying the spatial, temporal, and spectral signatures 
of brain activation recruited during dynamic processing of 
music features. Similar to our previous music listening stud-
ies (Alluri et al. 2012a, b; Cong et al. 2013a, b), we extracted 
five musical features from the musical stimulus, and spatial, 
temporal, and spectral factors using spatial Fourier–ICA to 
EEG data. We then analyzed the correlation between tem-
poral courses and the musical feature time series to identify 
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frequency-specific brain networks emerging from dynamic 
processing of musical features. We expected spatial Fourier-
ICA to reveal functionally oscillatory EEG source contribut-
ing to the musical feature processing.

Material and Methods

Data Acquisition

Participants

Fourteen right-handed and healthy adults aged 20 to 46 years 
old were recruited to take part in the current experiment 
after signing written informed consent. None of them was 
reported about hearing loss or history of neurological ill-
nesses and none of them had professional musical education. 
However, many participants reported background in different 
music-related interests such as learning to play an instru-
ment, producing music with a computer, singing. Table 1 
demonstrates the age and the non-professional musical back-
ground of each participant. This study was approved by the 
local ethics committee.

EEG Data Acquisition

During the experiment, participants were informed to listen 
to the music with eyes open. A 512 s long musical piece of 
modern tango by Astor Piazzolla was used as the stimulus. 
Music was presented through audio headphones with about 
30 dB of gradient noise attenuation. This music clip had 
appropriate duration for the experimental setting, because 
of its high range of variation in several musical features 

such as dynamics, timbre, tonality and rhythm (Alluri et al. 
2012a, b). The EEG data were recorded according to the 
international 10–20 system with BioSemi electrode caps (64 
electrodes in the cap and 5 external electrodes at the tip of 
the nose, left and right mastoids and around the right eye 
both vertically and horizontally). EEG were sampled at a 
rate of 2048 Hz and stored for further processing in off-
line. The external electrode at the tip of the nose was used 
as the reference. EEG channels were re-referenced using a 
common average. The data preprocessing was carried out 
using EEGLAB (Delorme and Makeig 2004). The EEG 
data were visually inspected for artefacts and bad channels 
were interpolated using a spherical spline model. A notch 
filter at 50 Hz was applied to remove noise. High-pass and 
low-pass filter with 1 Hz and 30 Hz cutoff frequencies were 
then applied as our previous investigation of the frequency 
domain revealed that no useful information was found in 
higher frequencies (Cong et al. 2013a, b). Finally, the data 
were down-sampled to 256 Hz. In order to remove EOG 
(i.e., eye blinks), ICA was performed on EEG data of each 
participant. To additionally remove any DC-jumps occasion-
ally present in the data, we differentiated each time series, 
applied a median filter to reject large discontinuities and 
reintegrated the signals back (Ramkumar et al. 2012).

Musical Features

Based on the length of the window used in the computa-
tional analyses, the musical features can be generally clas-
sified into two categories: long-term features and short-term 
features (Alluri et al. 2012a, b; Cong et al. 2013a, b). Five 
long-term musical features including Mode, Key Clarity, 
Fluctuation Centroid, Fluctuation Entropy and Pulse Clarity 

Table 1  Age and musical 
background of each participant

No. of participant Age Years of musi-
cal activity

Instrument Years of activity 
in dance

Type of dance

Sub01 20 15 Piano/singing None
Sub02 23 13 Piano/flute None
Sub03 23 16 Cello None
Sub04 23 None 6 Ballet
Sub05 20 2 Piano None
Sub06 42 15 Alto saxophone None
Sub07 46 None None
Sub08 22 7 Piano None
Sub09 21 None None
Sub10 34 6 Piano/keyboards None
Sub11 31 5 Piano None
Sub12 25 7 Piano/violin 7 Folk dance
Sub13 25 None None
Sub14 24 3 Piano None
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were examined here. They were extracted using a frame-
by-frame analysis approach commonly used in the field of 
Music Information Retrieval (MIR). The duration of the 
frames was 3 s and the overlap between two adjacent frames 
67% of the frame length. The chosen length of the frame 
was approximately consistent with the length of the auditory 
sensory memory (Alluri et al. 2012a, b). This analysis pro-
cess yielded the time series of musical feature at a sampling 
frequency of 1 Hz, in accordance with the short-time Fou-
rier transform (STFT) analysis of EEG data. Thus, both the 
musical features and temporal courses of EEG had 512 time 
points. All the features were extracted using the MIRtoolbox 
(Lartillot et al. 2008) in MATLAB environment.

For the completeness of the content, we briefly introduce 
the five features below. We extracted two tonal and three 
rhythmic features. For the tonal features, Mode represents 
the strength of major or minor mode. Key Clarity is defined 
as the measure of the tonal clarity. The rhythmic features 
included Fluctuation Centroid, Fluctuation Entropy, and 
Pulse Clarity. Fluctuation Centroid is the geometric mean of 
the fluctuation spectrum, representing the global repartition 
of rhythm periodicities within the range of 0–10 Hz (Alluri 
et al. 2012a, b). This feature indicates the average frequency 
of these periodicities. Fluctuation entropy is the Shannon 
entropy of the fluctuation spectrum, representing the global 
repartition of rhythm periodicities. Fluctuation entropy is a 
measure of the noisiness of the fluctuation spectrum (Alluri 
et al. 2012a, b; Cong et al. 2013a, b). Pulse Clarity, naturally, 
is an estimate of clarity of the pulse (Alluri et al. 2012a, b; 
Cong et al. 2013a, b).

Source Localization

For each subject, the brain’s cortical surface was recon-
structed from an anatomical MRI template in Brainstorm 
(Tadel et al. 2011). Dipolar current sources were estimated 
at cortical-constrained discrete locations (source points) 
separated by 15 mm. Each hemisphere was modelled by 
a surface of approximately 2000 vertices, thus a mesh of 
approximately 4000 vertices modelled the cortical surface 
for each subject.

The measured EEG signals are generated by postsynaptic 
activity of ensembles of cortical pyramidal neurons of the 
cerebral cortex (Lei and Yao 2011). These cortical pyrami-
dal neurons can be modelled as current dipoles located at 
cortical surface (Lin et al. 2006). The scalp potentials gen-
erated by each dipole depend on the characteristics of the 
various tissues of the head and are measured by the EEG 
scalp electrodes (Tian et al. 2011). With the geometry of 
the anatomy and the conductivity of the subject’s head, the 
time course of the dipole’s activity can be assessed by solv-
ing two consecutive problems: the forward problem and the 
inverse problem.

The forward problem is to model the contribution of each 
dipole to the signals of the EEG electrodes by solving Max-
well’s equations, which takes the geometry and conductivity 
of head tissues into account. In this study, a forward solu-
tion was calculated using the symmetric boundary element 
method (BEM) for each source point while a relative con-
ductivity coefficient was assigned to each tissue (with default 
MNI MRI template).

To solve the inverse problem, minimum-norm estimate 
(Lin et al. 2006) was adapted with a loose orientation con-
straint favoring source currents perpendicular to the local 
cortical surface (no noise modelling). When computing the 
inverse operator (1) the source orientations were constrained 
to be normal to the cortical surface; (2) a depth weighting 
algorithm was used to compensate for any bias affecting 
the superficial sources calculation; and (3) a regularization 
parameter, �2 = 0.1 was used to minimize numerical instabil-
ity, and to effectively obtain a spatially smoothed solution. 
Finally, an inverse operator G of dimensions Ns × Nc (where 
Ns is the number of source points and Nc is the number of 
channels: Ns ≫ Nc ) was obtained to map the data from 
sensor-space to source-space. Here, we had Ns = 4000 and 
Nc = 64.

Spatial Fourier Independent Component Analysis

Spatial Fourier-ICA was recently proposed to character-
ize oscillatory EEG/MEG activity in cortical source space 
(Ramkumar et al. 2012, 2014). The main idea was to apply 
complex-valued ICA to short-time Fourier transforms of 
source-level EEG/MEG signals to reveal physiologically 
meaningful components. We briefly introduced the main 
steps of spatial Fourier-ICA for the completeness of the 
content. Figure 1 demonstrates the analysis pipeline based 
on spatial Fourier-ICA and acoustical feature extraction.

Time–Frequency Data in Cortical Source Space

Preprocessed EEG data Y0 ( Nc channels × Np sampling 
points) were transformed by STFT to obtain complex-valued 
time–frequency representation (TFR) data Y1 ( Nc , Nf  , Nt ). 
To obtain TFR data in source space, three-way sensor-space 
TFR data Y1 was reorganized as two-way matrix Ŷ1 ( Nc , 
Nt × Nf  ). The source-space TFR data Ŷ2 was then obtained 
by left-multiplying the linear inverse operator G ( Ns,Nc ) 
which was computed using the minimum-norm estimate 
inverse solution sensor-space data Ŷ1,

Two-way data Ŷ2 ( Ns , Nt × Nf  ) can be rearranged as a 
three-way tensor format Y2 ( Ns , Nt , Nf  ). For application of 
spatial Fourier ICA, we then rearranged the three-way tensor 

(1)Ŷ2 = GŶ1
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Y2 as a two-way matrix X0 ( Nt,Nf × Ns ). Thus, each row of 
X0 was comprised of the complex-valued short-time Fourier 
coefficients from each source point for specific time points 
and each column represented a time point corresponding to 
a short-time window. In this study, the Hamming-widow 
with 3-s-length and 2-s-overlap of the adjacent windows 
was selected, resulting in a sampling rate of 1 Hz in time 
dimension. This sampling rate was in consistent with musi-
cal feature time series (see Musical features). The duration 
of EEG was 512 s, so we had Nt = 512 time points. We 
adopted a 512-point FFT to calculate the STFT resulting in 
256 frequency bins (Range of frequency: 1–128 Hz) for each 
window. We selected the range of frequency bins covering 
1–30 Hz ( Nf = 60 ) for further analysis.

Application of Complex‑Valued ICA on Reshaped Data

For data X0 , we applied complex-valued ICA (A. Hyvarinen 
et al. 2010) and treated each row as an observed signal 
assumed to be a linear mixture of unknown spatial spectral 
pattern. Since the original data ( X0 ) dimension was rela-
tively high for the complex ICA calculation, data dimen-
sion reduction was required in the preprocessing step of 
ICA. A common approach of data dimension reduction is 
principal component analysis (PCA) which is linear. Here 
we extended PCA to the complex domain by considering 
complex-valued eigenvalue decomposition (Li et al. 2011). 

The choice of model order was based on previous studies 
(Abou-Elseoud et al. 2010; Smith et al. 2009), which sug-
gested the number of a dimension slightly larger than the 
expected number of underlying sources. In this study, we 
tried different model orders and found that 20 was a reason-
able order, which preserved much of the information in the 
data and reduced the dimensionality of the results. Then 
we extracted 20 independent components using complex-
valued FastICA algorithm which applied ICA to STFT of 
EEG data in order to find more interesting sources than with 
time-domain ICA (A. Hyvarinen et al., 2010). This method 
is especially useful for finding sources of rhythmic activity. 
After complex-valued ICA, a mixing matrix Â ( Nt , Nic = 20 
is number of components) and estimated source matrix Ŝ 
were obtained. Each column of Â represented the temporal 
course for each independent component (IC). The ICs in the 
rows of Ŝ ( Nic , Nf × Ns ) represented spatial-spectral patterns, 
which can be decomposed into the spatial power map and 
power spectra.

Spatial Map, Spectrum, and Temporal Course of ICs

By reshaping each row of Ŝ for each IC, we obtained a 
matrix ( Nf ,Ns ), which meant there was a Fourier coefficient 
spectrum for each cortical source point. To obtain and visu-
alize the spatial map of the IC, we computed the average of 
the squared magnitude of the complex Fourier coefficients 

...

...
Spatial

Fourier-ICA

EEG

C
ha

nn
el

s
tim

e

...

time

comps Cortical pts x freq

Sp
at

ia
lm

ap
s

Te
m

po
ra

lc
ou

rs
es

Sp
ec

tra

Temporal courses
of musical feature

Retained ICs with
significant correlation

Spatial maps
clustering

The NO. of Subjects
and ICs across
musical feature

Spectra of ICs
involved in cluster

Acoustic feature
extraction

Fig. 1  Analysis pipeline based on spatial Fourier–ICA and acoustical 
feature extraction. Temporal, spectral and spatial profiles of brain pat-
tern were extracted using spatial Fourier–ICA. Musical feature time 
series were extracted using acoustical feature extraction. Then, cor-

relation analysis between temporal course of components and musical 
time series were performed to retain music elicited components. The 
spatial maps of retained components were clustered into several pat-
terns



 Brain Topography

1 3

across those frequency bins. Since the distribution of mean 
squared Fourier amplitude over the whole brain is highly 
non-Gaussian, we did not apply conventional z-score-based 
thresholding; instead, we applied a threshold to display for 
each component map only source points with the top 5% 
squared Fourier amplitude (Ramkumar et al. 2012). Then 
we analyzed the correlation coefficient of the spatial maps 
in those frequency bins and those spatial maps were similar. 
To visualize and obtain the spectrum of each IC, we calcu-
lated the mean of the Fourier power spectrum across those 
source points exceeding the 95th percentile (Ramkumar 
et al. 2012). Finally, we extracted the absolute values of the 
column of mixing matrix Â corresponding to the row of the 
estimated IC as the time course, which reflected fluctuations 
of the Fourier amplitude envelope for the specific frequency 
and spatial profile.

Stability of ICA Decomposition

To examine the stability of ICA, we applied 100 times ICA 
decomposition for each subject with different initial condi-
tions. For the real-valued case, ICASSO toolbox (Himberg 
et al. 2004) has been used to evaluate stability among mul-
tiple estimates of the fastICA algorithm (Hyvarinen 1999). 
All the components estimated from all runs were collected 
and clustered based on the absolute value of the correlation 
coefficients among the squared source estimates of ICASSO. 
Finally, the stability index Iq was computed for each com-
ponent. Iq reflects the isolation and compactness of a cluster 
(Himberg et al. 2004). Iq is calculated as follows:

where 
−

S (i)int denotes the average intra-cluster similarity; 
−

S (i)ext indicates average inter-cluster similarity and J is the 
number of clusters. The Iq ranges from ‘0′ to ‘1′. When Iq 
approaches ‘1′, it means that the corresponding component 
is extracted in almost every ICA decomposition application. 
This indicates a high stability of the ICA decomposition for 
that component. Otherwise, it means the ICA decomposition 
is not stable. Correspondingly, if all the clusters are isolated 
with each other, ICA decomposition should be stable. In 
general, there is no established criterion upon which to base 
a threshold for cluster quality. Given the preliminary nature 
of this investigation, we consider the decomposition is stable 
if the Iq is greater than 0.7.

In this study, the ICASSO toolbox was modified to be 
available for the complex-valued case as well. The correla-
tion matrix was used as the similarity measure for cluster-
ing in real-valued ICASSO. For the complex case, since the 
ICs were complex-valued, we just considered the correlation 
matrix among the magnitude ICs to perform the clustering 

(2)Iq = S(i)int − S(i)ext, i = 1,… , J

(Li et al. 2011). Then, we took the Iq as the criterion to 
examine stability of the ICA estimate.

Testing for Stimulus‑Related Networks

After ICA decomposition, we obtained 20 × 14 = 280 ICs 
(14 subjects, 20 components for each subject). Now the 
challenge is to determine which one of these represents the 
genuine brain responses. In all ICA based methods, it is a 
general question that which independent components need to 
be retained or which component just reflects noise. Here, we 
examine which components were modulated significantly by 
the musical features. We computed the correlation (Pearson’s 
correlation coefficient) between the time courses of musical 
features and the time courses of those ICs (the dimensional-
ity of both them is 512 points) in order to select stimulus-
related activations. We used the Monte Carlo method and 
permutation tests presented in our previous research (Alluri 
et al. 2012a, b; Cong et al. 2013a, b) to calculate the thresh-
old of significant correlation coefficient. In this method, a 
Monte Carlo simulation of the approach was performed to 
determine the threshold for multiple comparisons. We kept 
those ICs whose time courses were significantly correlated 
(p < 0.05) with the time courses of musical features for fur-
ther analysis.

Cluster Analysis

The selected ICs had been represented by spatial map, spec-
trum, and temporal course. Since spatial ICA was carried 
out on individual level EEG data, we needed to examine the 
inter-subject consistency among participants. In this study, 
we focused on the spatial pattern emerging in the process 
of freely listening to music, so a group level data analysis 
was performed by clustering spatial maps of the selected 
ICs to evaluate the consistency among the participants. For 
reliable clustering, we applied a conventional z-score-based 
normalization to each spatial map. All spatial maps of the 
screened components significantly correlated with musical 
features were clustered into M clusters to find common spa-
tial patterns among most of participants. Here for simplic-
ity, a conventional k-means cluster algorithm was used with 
the Kaufman Approach (KA) for initializing the algorithm. 
We used the minimum description length (MDL) to deter-
mine the number of clusters M. Afterwards we countered 
the number of subjects involved in ICs in each cluster. If 
the number of subjects in one cluster is less than half of 
the all subjects, this cluster would be discarded for the rea-
son that such a cluster does not reveal information shared 
among enough participants. For the retained clusters, the 
spatial-spectral-temporal information was obtained, which 
was represented by the centroid of the cluster, the spectra 
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of ICs and the numbers of subjects whose temporal courses 
were involved in this cluster.

Results

Musical Features

Five musical features were extracted by MIRtoolbox (Lar-
tillot and Toiviainen 2007) with 3 s time-widow and 2 s 
overlap, resulting in 1 Hz sampling rate of temporal course. 
They are Fluctuation Centroid, Fluctuation Entropy, Key 
Clarity, Mode and Pulse Clarity. The time series of these 
features had a length of 512 samples, which matched the 
length of the time course of the EEG components. Figure 2 
shows their temporal courses.

Stability of ICA Decomposition

We extracted 20 ICs using modified ICASSO with 100 runs 
for each subjects’ data, then we obtained the stability index 
Iq . Figure 3 shows the magnitude of Iqs for each participant, 
greater than 0.7 for most ICs. The 20 ICs were separated 
with each other for every participant from the view of clus-
tering. Thus, the ICA estimate was stable and the results of 
ICA decomposition in this study were satisfactory for each 
participant data to further analysis.

Interesting Clusters: Frequency‑Specific Networks

After 85 ICs whose spatial maps were significantly corre-
lated with musical features were selected, we set the num-
ber of clusters as five by performing MDL to estimate the 
optimal model order. Then the spatial maps of ICs were 
clustered into five clusters. Three clusters representing 

Fig. 2  Time course of five 
musical features
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frequency-specific networks were chosen since the number 
of subjects in the cluster is more than half of the all sub-
jects. Figure 4 demonstrates one of these clusters including 
the centroid of all spatial maps (Fig. 4a), the distribution of 
number of subjects across musical features (Fig. 4b) and 
the spectrum of the ICs in this cluster (Fig. 4c). Then we 
computed the correlation coefficients among spatial maps 
in each cluster to evaluate the performance of clustering. 
Figure 5 shows the inter-cluster similarity. We computed 
the mean of the correlation coefficients in each cluster and 
the corresponding standard deviation (SD). For cluster#1, 
the mean is 0.642 and the corresponding standard deviation 
(SD) is 0.1238. For cluster#2, the mean is 0.7125 and SD is 
0.0572. For cluster#3, the mean is 0.8084 and SD is 0.0747. 
This indicates that the spatial patterns are similar across the 
participants. In the Table 2, we listed the participants whose 
EEG data were correlated with every musical feature in each 
cluster.

Beta‑Specific Network

Figure 4 shows results of the Beta-specific brain net-
works engaged in processing music features. The spatial 
map displays that musical features were associated with 
increased activation in the bilateral superior temporal 
gyrus (STG). The spectrum of ICs in this cluster illus-
trates the beta rhythm (focusing on 20 Hz) was involved 
in generating this network. Thus, relatively large-scale 
brain region generated by beta rhythm was activated in 
the bilateral STG and the magnitude of activation in right 
hemisphere was a little stronger than left hemisphere. 
This Beta-specific network was found in seven subjects 
during music free-listening (see the first row of Table 2). 
Fluctuation Centroid were associated with this brain 
networks among subjects 2, 4, 5, and 12. The brain net-
works of subjects 1, 2, 3 and 13 were correlated with key 
feature. For fluctuation entropy, pulse clarity and mode, 
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located in delta or beta band. Different curves represent different ICs



Brain Topography 

1 3

there was one subject involved in this cluster respectively. 
In addition, the number of ICs correlated with the musical 
features was more than the number of participants since 
there were 20 ICs for each subject.

Alpha‑Specific Network

Figure 6 displays relatively large brain activity in the bilat-
eral occipital lobe according to the spatial map. As can be 
seen, the oscillations of this pattern were dominated by alpha 
rhythm (focusing on 10 Hz) with few ICs located in Delta 
band. There were eight participants appearing alpha-specific 
occipital networks under free-listening to music. The second 
row of the Table 2 shows the subjects involved in the net-
works linked with each musical feature.

Delta‑Beta‑Specific Network

Figure 7a illustrates increased activity linked with musical 
features in bilateral prefrontal gyrus (PFG). The spectrum 
(Fig. 7c) shows both beta and delta oscillations recruited 
these areas across participants. The delta-beta-specific net-
works were found in eight subjects. Mode was associated 
with this brain networks among subjects 2, 3, 4, 6, 7 and 9. 
The networks of subjects 4, 5, 7, 9 and 11 were correlated 
with Fluctuation Centroid (see the third row of Table 2).

Discussion

In this study, we investigated spatial spectral profiles of brain 
networks during music free-listening. To this end, we pro-
posed a novel method combing spatial ICA, source localiza-
tion and music information retrieval. EEG data were recorded 
when participants listened to a piece of music freely. Firstly, 
we applied STFT to preprocessed EEG data. After this, an 
inverse operator was obtained using source localization and 
the sensor-space data was mapped to source-space data. Then 
complex-valued ICA was performed to extract spatial-spectral 
patterns. The stability of ICA estimate was evaluated using a 
complex-value ICASSO. Meanwhile, the temporal evolutions 
of five long-term musical features were extracted by the com-
monly used MIRtoolbox. Following this, the spatial-spectral 
ICs related to music stimuli were chosen by correlating their 
temporal course with the temporal course of musical features. 
To examine the inter-subject consistency, a cluster analysis 
was applied to spatial patterns of the retained ICs. Overall, our 
results highlighted the frequency-dependent brain networks 
during freely listening to music. The results are consistent 
with previous findings published in other studies (Alluri et al. 
2012a, b; Cong et al. 2013a, b; Janata et al. 2002).

It was found that beta-specific brain networks in the bilat-
eral STG emerged from dynamic processing of musical fea-
tures (see Fig. 4). The bilateral STG were mostly activated 
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Fig. 5  Correlation coefficients matrix among spatial maps of the ICs 
in each cluster. The mean correlation coefficient in cluster#1 is 0.642 
and the corresponding standard deviation (SD) is 0.1238. For clus-

ter#2 the mean is 0.7125 and SD is 0.0572. For cluster#3, the mean is 
0.8084 and SD is 0.0747

Table 2  Participants involved 
in each cluster across musical 
features among 14 subjects 
(from 1 to 14)

Cluster Musical features Total subjects

Fluctuation centroid Fluctuation entropy Key clarity Mode Pulse clarity

#1 2 4 5 12 2 1 2 3 13 4 5 7
#2 1 8 10 14 8 11 13 7 8 14 2 8 11 14 1 10 13 8
#3 4 5 7 9 11 3 6 5 6 9 2 3 4 6 7 9 7 8
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during music listening, which was involved in long-term 
musical features processing. It was interesting to note that 
the beta oscillations were enhanced in this bilateral spatial 
profile (see Fig. 4c). This spatial-spectral pattern appeared 
more related with Fluctuation Centroid and Key process-
ing than Fluctuation Entropy, Mode and Pulse Clarity (see 
Fig. 4b). The same areas were found in previous studies 
where timbre-related features were correlated with activa-
tions in large areas of the temporal lobe using fMRI (Alluri 
et al. 2012a, b). Besides, early MEG studies demonstrated 
that cortical rhythm activity in beta band activity (15–30 Hz) 
was tightly coupled to behavioral performance in musical 
listening and associated with predicting the upcoming note 
events (Doelling and Poeppel 2015). Since beta bands have 
been associated with motor and rhythmic processes, listeners 
may voluntarily engage in mental activities related to motor 
during listening to segments engaged in dancing (Meyer 
et al. 2006; Poikonen et al. 2018b). For the participants who 

like dancing, music is comprehensive and collaborative. 
Music forms a setting in which dancers produce movements 
that are coherent with (or intentionally in contrast to) the 
prevailing sound in terms of rhythm, sentiment, and move-
ment style (Poikonen et al. 2018a). When freely listening, a 
participant might be more focused on the gist of the music 
than to the sequence of an individual instrument, melody 
contour, or rhythmic pattern. Importantly, in the current 
study, no participant was familiar with the presented music 
stimuli. Thus, the beta-specific brain networks emerging in 
the bilateral STG could reflect the activation of higher-level 
brain processes (Pearce et al. 2010; Poikonen et al. 2018b).

We also observed alpha oscillatory visual networks (see 
Fig. 6), which is in line with our previous study (Cong et al. 
2013a, b). Alpha oscillations play an important role in basic 
cognitive process, which is linked to suppression and selec-
tion of attention (Klimesch 2012). Event-related brain acti-
vation in alpha band has been found in studies with sensory 
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or motor tasks and with attention and working memory 
tasks. For example, alpha event-related synchronization was 
showed over the leg area of the motor cortex while event-
related desynchronization in alpha was observed over the 
hand area when participants performed hand-movement 
tasks. This compensatory distribution of alpha activity dem-
onstrates that alpha oscillation in task-irrelevant regions is 
associated with cortical disengagement (Pfurtscheller 2003). 
That could be the reason that the alpha-specific power over 
visual cortices was larger when attention was focused on the 
auditory stimuli.

A delta-beta oscillatory network in prefrontal cortex were 
also observed during listening to music (see Fig. 7). Helfrich 
et al. argued that the prefrontal cortex provides the structural 
basis for numerous higher cognitive functions and oscil-
latory dynamics of prefrontal cortex provide a functional 
basis for flexible cognitive control of goal-directed behavior 
(Helfrich and Knight 2016). Besides, prefrontal cortex has 

the function of entrainment as a mechanism of top-down 
control (Helfrich and Knight 2016). Our findings provided 
the evidence that the higher cognitive function with specific 
rhythms were involved in continuous and naturalistic music. 
Janata et al. identified an area in the rostromedial prefrontal 
cortex as a possible brain units for tonal processing (Janata 
et al. 2002). In addition, some studies demonstrated that 
oscillations in the delta and beta bands were instrumen-
tal in predicting the occurrence of auditory targets (Arnal 
et al. 2015; Doelling and Poeppel 2015). Music is shown 
to be a powerful stimulus modulating emotional arousal, an 
increase of posterior alpha, central delta, and beta rhythm 
was observed during high arousal (Mikutta et al. 2012; 
Poikonen et al. 2016a, b; Poikonen et al. 2016a, b). That 
may explain why the delta–beta oscillations in this study 
appears in prefrontal cortex (Fig. 7).

From the methodology consideration, most of these stud-
ies investigated one pattern of the spatial spectral profile 
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and did not examined the interplay between brain networks 
and spectral mode. In contrast, we studied the interactions 
between brain region and cortical oscillations and found 
the brain networks during music listening were frequency-
dependent. In terms of our proposed approach for analysis of 
frequency-specific networks during naturalistic music listen-
ing, we can credibly find the spatial-spectral patterns elic-
ited by musical stimulus. There are some related approaches 
using spatial ICA in a variety of specific techniques to inves-
tigate the RSNs under MEG data. Nugent et al. proposed a 
method named as MultibandICA to derive frequency-spe-
cific spatial profile in RSNs. However, six frequency bands 
(delta, theta, alpha, beta, gamma, high gamma) firstly need 
to be extracted from the MEG data and were concatenated in 
certain dimensionality; ICA was then performed to concat-
enated data (Nugent et al. 2017). Similar methods were pro-
posed in (Sockeel et al. 2016). Here distinctly, the proposed 
approach is completely data-driven and does not require 
pre-define the frequency band. Another important asset of 
our study is that the clustering was applied to the spatial 
maps to examine the inter-subject consistency in proposed 
method. The correlation coefficients were then computed in 
each cluster. We observed that the individual spatial-spectral 
profiles in every retained cluster were similar but the corre-
sponding time courses were different. This is different from 
analysis of event-related potential (ERP) where temporal 
ICA components sharing identical spatial profiles might 
be similar. The differences might be resulted from differ-
ent responses of participants under real-word experiences. 
In the future, we will attempt to develop group spatial ICA 
to analyze group-level data where the individual data are 
concatenated in time dimension.

Conclusion

In this study, we introduced a novel framework with sev-
eral techniques including Fourier ICA, source estimation, 
acoustic feature extraction, and clustering for exploiting the 
spectral–spatial structure of brain during naturalistic stimu-
lus. A complex-value ICA applied to source-space time–fre-
quency representation of EEG data. Following this, a modi-
fied ICASSO was performed to evaluate the stability of ICA 
estimate and a cluster analysis was applied to examine the 
inter-subject consistency. The identified networks involved 
in music perception were in line with those previous studies. 
Further, we found that brain networks under music listen-
ing were frequency-specific and three frequency-dependent 
networks associated with processing musical features were 
observed.
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Appendix

The features were extracted from the stimulus on a frame-
by-frame basis (see (Alluri and Toiviainen 2010) for more 
details). A brief description of each of the acoustic features 
is presented below. A detailed explanation can be found in 
the user manual of the MIRToolbox (Lartillot and Toivi-
ainen 2007).

Mode strength of major of minor mode.
Key Clarity the strength of the estimated key, computed 

as the maximum of cross-correlations between the chroma-
gram extracted from the music and tonality profiles repre-
senting all the possible key candidates.

Fluctuation Centroid geometric mean of the fluctuation 
spectrum representing the global repartition of rhythm perio-
dicities within the range of 0–10 Hz, indicating the average 
frequency of these periodicities.

Fluctuation Entropy Shannon entropy of the fluctua-
tion spectrum (Pampalk et al. 2002) representing the global 
repartition of rhythm periodicities. Fluctuation entropy is 
a measure of the noisiness of the fluctuation spectrum. For 
example, a noisy fluctuation spectrum can be indicative of 
several co-existing rhythms of different periodicities, thereby 
indicating a high level of rhythmic complexity.

Pulse Clarity the strength of rhythmic periodicities 
sound, representing how easily the underlying pulsation in 
music can be perceived.
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