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To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous 

approaches based on spatial independent component analysis (ICA) have recently been used to ongoing 

electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy 

subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level 

spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain 

networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive 

disorder (MDD). The music-induced oscillatory brain patterns were determined by permutation correlation analysis 

between individual time courses of Fourier-ICA components and musical features. We found that 1) three 

components, including a beta sensorimotor network, a beta auditory network and an alpha medial visual network, 

were involved in music processing among most healthy subjects; and that 2) one alpha lateral component located in 

the left angular gyrus was engaged in music perception in most individuals with MDD. The proposed method allowed 

the statistical group comparison, and we found that: 1) the alpha lateral component was activated more strongly in 

healthy subjects than in the MDD individuals, and that 2) the derived frequency-dependent networks of musical 

feature processing seemd to be altered in MDD participants compared to healthy subjects. The proposed pipeline 

appears to be valuable for studying disrupted brain oscillations in psychiatric disorders during naturalistic paradigms. 

Keywords: Major depressive disorder; naturalistic music listening; ongoing EEG; independent component analysis; 

brain networks; neural oscillations. 

1. Introduction 

A number of robust brain networks have recently been 

revealed by neuroimaging tools 1, 2. Those networks are 

thought to involve cognition and attention or reflect 

fundamental neural processes and dysfunctions in 
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neurological and psychiatric disorders 3-7. Most brain 

networks can be observed even during resting state and 

are therefore referred to as resting state networks (RSNs). 

The description of RSNs gives new insight into how 

separated brain regions dynamically integrate. One of the 

RSNs, the default mode network, which is composed of 
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brain areas demonstrating the greatest spontaneously 

metabolic activity at rest, has been assumed to reflect the 

brain’s intrinsic default pattern 8, 9. In addition to RSNs, 

some task-relevant transient networks related to self-

paced movement, perception and working memory have 

been observed 10, where temporal courses of dynamic 

connectivity were analyzed based on envelope 

correlation with time-windowed data and between pairs 

of spatially separate regions defined by cortical 

segmentation 11, 12.  

Recently, increased interest has been directed to 

exploring functional brain networks during natural 

paradigms such as music, movies, and video 13-18. Unlike 

the repetitions of abstracted stimuli in order to improve 

the signal to noise ratio of recorded data 19-24, it is a 

challenge to uncover brain activity during naturalistic 

paradigms 25. Nevertheless, many methods and 

techniques have been applied to explore the 

electrophysiological processes underlying naturalistic 

stimuli. Inter-subject correlation approaches have been 

used to show inter-subject synchronization during natural 

viewing in functional magnetic resonance imaging 

(fMRI) 26, magnetoencephalography (MEG) 27 and 

electroencephalography (EEG) 28. By combining fMRI, 

computational acoustic feature extraction and behavioral 

psychology, Alluri et al. found that large-scale brain 

networks emerged when participants freely listened to 

music 13. Zhu et al. recently combined acoustic feature 

extraction, spatial Fourier independent component 

analysis (ICA) and clustering to examine the frequency-

specific brain networks involved in music listening in 

healthy participants, which demonstrated that functional 

brain patterns for processing of musical feature are 

frequency-specific 29. These findings also demonstrated 

common spatio-spectral patterns (frequency-specific 

bran networks) are similar across participants under 

music listening.  

Major depressive disorder (MDD), is a mental 

disorder characterized by low mood, loss of interest in 

normally enjoyable activities, and low self-esteem, as 

well as cognitive impairment, psychomotor agitation, 

and functional impairment 30. Treatment for MDD is 

usually inadequate, and the underlying mechanisms of 

such disease are not well understood 31. Within the last 

decade, a number of neuroimaging studies using different 

methodologies have demonstrated that MDD is related to 

altered brain network function 32-38. Altered brain 

networks were observed across those coordinating 

interactions between several spatially separate brain 

regions supporting multiple specific cognitive functions, 

such as emotion, attention and self-referential processing. 

Moreover, the neuropathology of MDD is associated 

with altered connections between different brain systems 
39. Even though findings concerning altered neural, 

connections within and between these networks vary 

among studies, it is argued that MDD can be understood 

as a “network disease” with pathological changes in 

functional connectivity patterns 40. Also, some studies 

explored music listening as a potential complementary 

intervention to reduce depressive symptoms, which 

demonstrated that music could be offered as a way to help 

patients reduce anxiety 41-43. Yet, the neurobiological 

mechanisms underlying symptom improvement in 

depression during music listening remain unclear.  

Up to now, many group comparison studies using 

group-level methods of resting state data have been 

reported across many pathologies 44, 45. Nugent et al. 

performed group ICA on the Hilbert envelope of MEG 

data in MDD and healthy control groups to investigate 

group differences in RSNs 45. In contrast, studies 

applying ICA techniques to brain data under naturalistic 

stimuli have investigated only healthy participants. For 

example, individual-level spatial Fourier ICA was 

successfully applied to ongoing EEG of healthy subjects 

while they freely listened to music in our previous study, 

which demonstrated that there are similar frequency-

specific networks emerging across healthy subjects under 

music listening 29. Few studies have attempted to 

investigate the differences in brain networks under 

naturalistic stimuli between healthy control subjects and 

MDD participants. Here, we present an approach that 

extends the individual analysis and allows us to examine 

group-level comparisons between a sample of healthy 

control participants and MDD participants while freely 

listening to music. We expected to see different 

frequency-specific networks of music processing in 

MDD subjects compared to healthy subjects. 

Additionally, we expected to find a plausible relationship 

between frequency-specific networks and depressive 

symptoms, as evaluated in clinical samples through 

depression questionnaire ratings. 

2. Material and methods 

Figure 1 demonstrated the analysis pipeline and we here 

introduced the overview. Two stages were performed in 

the proposed approach. In the individual-level stage, 
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short-time Fourier transform (STFT) was performed on 

EEG data collected during music listening from MDD 

participants and healthy controls. A three-way array of 

data (time × frequency × channel) for each subject was 

obtained, and cortical source data were obtained via 

source localization based on minimum norm estimation. 

The cortical three-way array was then reshaped into a 

two-way matrix (time × frequency ∗ channel) for each 

subject. In the group-level stage, the individual matrix 

from each subject was temporally concatenated since we 

assume that subjects shared the spatial profiles. The 

Fourier ICA was applied to obtain independent 

components including spatio-spectral factors and the 

temporal courses. The temporal courses were segmented 

into separate epochs, each of which was corresponding to 

an individual participant. Five musical (tonal and 

rhythmic) features were then extracted from the music 

stimuli. Finally, statistical analysis was performed to find 

music-induced brain activity in each group by correlating 

the time courses with musical feature time serials, and the 

components showing differences between groups were 

retained for further analysis. In addition, we also 

investigated the relationship between the activation 

strength of frequency-specific networks and depressive 

symptoms, as measured by questionnaire ratings of 

depression. 

2.1.  Data description 

2.1.1.  Participants 

There were 20 psychiatrically healthy adults (4 males; 16 

females) and 20 MDD adults (6 males; 14 females) in the 

current study. The mental health of each subjects was 

evaluated through the Structured Clinical Interview for 

DSM-IV-TR (SCID) and unstructured interviews with a 

psychiatrist. The Hamilton Rating Scale for Depression 

(HRSD), Hamilton Anxiety Rating Scale (HAMA), and 

Mini-Mental State Examination (MMSE) were used in 

the mental assessment. The HRSD is a multi-item 

questionnaire adopted to provide an indication of 

depression, and as a guide to assess recovery. The 

HAMA is a psychological questionnaire adopted by 

clinicians to assess the severity of a depressed patient’s 

anxiety. The MMSE is a 5-minute bedside test that is 

used as a screen of mental status and to evaluate the 

degree of cognitive dysfunction in patients with diffuse 

brain disorders. The values of those indexes from all 

participants are listed in Table 1. The experimental 

procedure in this study was approved by the research 

ethics committee of the Dalian University of Technology 

and all the participants were informed about the 

experiment and have signed an informed written consent 

before participation. 

2.1.2.  Stimulus 

The music clip adopted in the current experiment was the 

tango “Adios Nonino,”, which has a duration of 8 

minutes and 32 seconds. This music clip had been used 

in previous studies 46, 47 for its suitable length and high 

variance in several acoustical musical features such as 

tonality and rhythm. 

2.1.3.  EEG recording 

The EEG measurements were conducted according to the 

International 10-20 system with 64 electrodes. The 

signals were amplified using Neuroscan amplifiers and 

sampled at a rate of 1,000 Hz. During the EEG 

measurements, subjects were asked to listen to music clip 

with their eyes open. Electrode impedances were kept 

below 5 KΩ. Common average channels were used to re-

Table 1.  Demographic information of the participants. 

 Controls (CON) Patients with MDD CON ∙ MDD 

 Mean (SD) n Mean (SD) n p values 

Age, years 37.8 (11.4) 20 42.8 (10.7) 20 0.17 

Gender (M:F) 4:16  6:14  0.96 

Education (EDU) 13.7 (3.6) 20 12.8 (3.3) 20 0.40 

HRSD 2.4 (1.2) 20 23.3 (3.5) 20 < 0.001 

HAMA 2.3 (1.3) 20 19.2 (3.0) 20 < 0.001 

MMSE 28.3 (0.9) 20 28.1 (1.0) 20 0.53 

Duration of disease, months - - 12.8 (8.3) 20 - 

Notes: M, male; F, female; HRSD, Hamilton Rating Scale for Depression; HAMA, Hamilton Anxiety Rating 

Scale; MMSE, Mini-Mental State Examination 
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reference EEG data. Artifacts were corrected using 

infomax ICA in EEGLab toolbox 48. A 50 Hz notch filter, 

1 Hz high-pass and 40 Hz low-pass filters were used to 

reduce noise. The EEG data were then downsampled to 

256 Hz. 

2.1.4.  Acoustic feature processing 

We extracted the musical features using the 

computational extraction approach adopted in previous 

studies 46, 47. Five long-term musical features, including 

Fluctuation Centroid, Fluctuation Entropy, Key Clarity, 

Mode, and Pulse Clarity, were obtained from the musical 

stimuli using the Music Information Retrieval (MIR) 

Toolbox 49, which captures tonal and rhythmical 

properties. In brief, Fluctuation Centroid yields an 

estimate of the rate of musical events in the music; 

Fluctuation Entropy provides a measure of rhythmic 

complexity; Key Clarity indicates the degree to which the 
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Fig. 1.  Pipeline of group source-space ICA. At the individual-level stage, STFT was performed on the EEG data 𝒀𝟎 (𝑁𝑐 channel x 𝑁𝑝 

time point) to extract spectrogram data 𝒀𝟏 (𝑁𝑐, 𝑁𝑓, 𝑁𝑡). The inverse operator 𝐆 (see the main text) was left-multiplied to sensor-level 

data 𝒀𝟏 to obtain the spectrogram data 𝒀𝟐 (𝑁𝑠,𝑁𝑓,𝑁𝑡) in source space. The three-order data  𝒀𝟐 was reshaped to the matrix 𝒀𝟐 (𝑁𝑡, 

𝑁𝑠 × 𝑁𝑓). Dimension reduction was performed using PCA subject by subject. At the group-level stage, reduced data were temporal 

concatenated to matrix 𝑿𝟎. ICA decomposition was performed on this matrix. The columns of the mixing matrix represent the temporal 

courses of spatio-spectral patterns and the rows of independent source-level matrix were divided into the spatial maps and the 

corresponding spectra. 
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music conforms with Western tonality structure; Mode 

indicates whether the music is in a major or minor key; 

and Pulse Clarity estimates the salience of a regular pulse 

in the music. We adopted a frame-by-frame analytical 

procedure used in the MIR field to extract musical 

features. We set the length of frames to 3-s and the 

adjacent overlap to 2 s (see 46, for the details). For each 

feature, this process yielded a time series with a 1 Hz 

sampling rate representing its temporal evolution. All 

processes were performed in the MATLAB environment. 

2.2.  Group source-space ICA 

2.2.1.  Source analysis 

First, STFT (3s time window, 2s overlap and Hamming 

window) was applied to the preprocessed EEG data 𝑌0 

(𝑁𝑐 channels x 𝑁𝑝 sampling points) in the sensor space to 

obtain the corresponding spectrogram 𝑌1 (𝑁𝑐,𝑁𝑓,𝑁𝑡). For 

each participant, the brain surface was reconstructed 

from an anatomical MRI template mesh, based upon the 

Montreal Neurological Institute human brain in 

Brainstorm 50. Individual electrode positions of each 

EEG dataset were co-registered with the brain template 

based upon the three fiduciary points and electrode 

locations. At cortically separate constrained discrete 

locations (source points), we estimated the dipolar 

current sources. Each cerebral hemisphere was modeled 

by a cortical surface of around 2,000 source points 

(vertices), resulting in a mesh-grid of around 4,000 

vertices modeling the brain surface for each participant. 

A single-compartment boundary element model (BEM) 

was used to model the conductivity of the cranium. The 

linear inverse operator G with dimension 𝑁𝑠 × 𝑁𝑐  ( 𝑁𝑠 

denotes the number of vertices and 𝑁𝑐  denotes the 

number of channels: 𝑁𝑠 ≫ 𝑁𝑐 ) was calculated using 

MNE with a loose orientation constraint favoring source 

currents perpendicular to the local cortical surface by a 

factor of 2.5 with respect to the currents along the surface 

in Brainstorm Toolbox. The spectrogram data 𝑌2 (𝑁𝑠, 𝑁𝑡, 

𝑁𝑓) at the cortical level was produced by left-multiplying 

the inverse operator matrix G (𝑁𝑠, 𝑁𝑐) to the sensor-space 

matrix 𝑌1 (see Fig. 1).  

2.2.2.  Group ICA 

After source localization, we reorganized the three-way 

array data 𝑌2 into two-way array 𝑌3 (𝑁𝑡 , 𝑁𝑠 × 𝑁𝑓). In the 

obtained matrix 𝑌3 , its rows consisted of the STFT 

coefficient from each cortical voxel for the 

corresponding time point, and its columns comprised a 

time stamp corresponding to a time window in a specific 

frequency bin and source point. We performed PCA to 

reduce the dimension of the matrix 𝑌3 and whiten them. 

The selection of PCA dimensions was based upon fMRI 

studies 51 suggesting that the choice of dimensions was 

slightly greater than the expected number of underlying 

oscillatory sources. It has been suggested that 10–12 

resting-state networks can be identified from the brain 

cortex using ICA with a model order around 25–40 

dimensions 52. Although there are information theoretic 

methods (e.g., AIC and BIC), such empirical rules appear 

to be more commonly used during dimensional reduction 

of neuroimaging data 52, 53. In this study, we assume the 

number of the underlying sources to be 25 and set the 

order to 40. It should be noted that the above analysis was 

performed at the individual level. Then the reduced data 

from all subjects were concatenated in time domain. 

Temporal concatenation does not require the consistency 

across all subjects in time dimension for group ICA. It is 

required that all subjects share the spatio-spectral pattern. 

The consistency of spatio-spectral profiles (frequency-

specific networks) was examined across subjects during 

music listening in our previous study 29. The general issue 

of the spatial consistency assumption under the inter-

subject differences has already been discussed in the 

related literature 54, and we will discuss this further below 

(see Discussion). We reduced the concatenated data to 40 

dimensions at the group level. The spatial ICA was 

performed to estimate 25 underlying independent 

components (ICs) using fastICA in the MATLAB 

environment. The estimation of ICA maximized the 

independence in the spatial-spectral domain at the same 

time and the recovered spatial spectral ICs were 

independent with no requirement of temporal 

independence. The rows of the extracted component 

matrix S  represent the independent spatio-spectral 

profiles, which were transformed to spatial maps and 

power spectrum by extracting the absolute value and by 

averaging across cortical points and frequency bins, 

separately. The absolute value of the column of the 

obtained mixing matrix A represents the temporal course 

corresponding to the independent spatio-spectral pattern. 

The details and interpretation can be found in previous 

studies 55, 56. Fig. 1 demonstrates the flow chart with data 

matrix representation.  
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Since ICA estimation is not stable and depends on the 

randomly initialized procedure, there may be slight but 

quantifiable fluctuations in the resulting ICs among 

different runs. In the preliminary analysis, we noted that 

these fluctuations may cause small differences in group 

level results. To investigate the stability of ICA estimate, 

we used a well-developed Icasso toolbox 57. This tool has 

already been adopted to assess stability among repeated 

runs of the fast-ICA algorithm and get more precise ICA 

estimations than any single ICA decomposition. All the 

ICs obtained from all ICA estimates were clustered using 

the absolute values of the correlation coefficient in the 

squared estimated sources. Then, the stability index, 

referred to as Iq, was calculated for each IC. Iq index 

represents the compactness and isolation of a cluster. Iq 

can be computed as:   

𝐼𝑞 = 𝑆̅(𝑖)𝑖𝑛𝑡 − 𝑆̅(𝑖)𝑒𝑥𝑡  ,   𝑖 = 1, … , 𝐽 ,                          (1) 

where 𝑆̅(𝑖)𝑖𝑛𝑡 represents the averaged similarity of intra-

cluster and 𝑆̅(𝑖)𝑒𝑥𝑡  denotes the averaged similarity of 

inter-cluster. J indicates the underlying number of 

clusters. Note that the range of 𝐼𝑞  is 0 to 1. Larger Iq 

means that the estimated ICs from all runs are more 

stable. In other words, if all the component clusters were 

separated from each other, the current ICA estimate were 

supposed to be stable. In general, ICA decomposition is 

considered to be stable if the Iq index is larger than 0.7.   

The resulted ICs are spatio-spectral profiles. In order 

to obtain group level spatial maps and spectra for each 

IC, a matrix (𝑁𝑓 , 𝑁𝑠) in the spatio-spectral domain was 

obtained by rearranging each row of 𝑆, which means that 

a Fourier coefficient spectrum existed for each cortical 

source point. The spatial map (profile) was obtained by 

computing the average of the squared magnitude of the 

Fourier coefficient across those frequency bins satisfied 

with the top 5% squared Fourier amplitude. Similarly, the 

power spectrum of each IC was obtained by calculating 

the average of the Fourier power spectra across those 

source points satisfied with the 5% squared Fourier 

amplitude. Finally, the column of the mixing matrix 𝐴 

was considered as the concatenated time course across 

subjects, corresponding to the row of the estimated IC. 

The concatenated time courses were divided into 

individual segments, each of which corresponded to a 

single subject. After the back projection of PCA, the 

individual time courses of each participant were obtained 

for each ICs. Thus, we had N (number of subjects) time 

courses, a spatial map and a spectrum for each IC. The 

time courses reflect the temporal evolution of the spectro-

spatial patterns. 

2.2.3.   Components related to music-induced 

activity 

After ICA estimation, we obtained 25 ICs. The challenge 

was how to separate music-induced brain oscillations 

from spontaneous oscillations. In this study, we 

calculated Pearson’s correlation coefficient between the 

musical feature time series and the individual temporal 

courses of the ICs. The permutation tests and Monte 

Carlo procedure presented in our previous work 46, 47 

were applied to compute the threshold of the significant 

correlation coefficient for multiple comparisons. Then 

we counted the number of subjects whose time course 

was significantly correlated with music features in each 

group (CON and MDD) for every IC. If the number of 

subjects with significantly correlated time courses was 

more than half of participants for one IC, it was 

concluded that the IC reflected the brain activity linked 

to music stimuli across most participants in one specific 

group, and it was considered as a component associated 

with this group. 

2.2.4.  Group differences between components 

For each IC, the variance of individual time courses was 

computed and used as a magnitude of activation for each 

participant. This magnitude can be considered an 

activation index of the spatio-spectral pattern (frequency-

dependent network) during the whole duration of music 

listening. Thus, each subject had an activation index 

representing the activation magnitude of the spatio-

spectral pattern for each IC. An one-factor (group) 

statistical analysis was performed to examine the group 

difference in the activation index for each IC. We 

demonstrated the group difference with a boxplot (see 

Fig. 3E). The ICs with activation p-value smaller than 

0.05 were considered candidate ICs for further analysis. 

It should be noted that Bonferroni correction was used 

for p-values to correct for multiple comparisons across 

components. 

2.2.5.  Correlation between components and 

behavioral features 

Modulation in the power amplitude of neuronal 

oscillations has been functionally related to sensory, 

motor and cognitive function. Such relationship is 

commonly established by linking the power modulations 
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to specific target variables such as task ratings or 

personality 58. In this study, we examined the amplitude 

modulation of the frequency-dependent networks by the 

factors representing depressive symptoms via correlating 

the activation index with the behavioral data. Each 

subject had one activation index (see the section 2.2.4) 

and a behavioral scale index (e.g., the HAMA). For each 

IC, we computed the correlation coefficients between 

activation index sequences with behavioral index 

sequences in each group respectively. The threshold of 

significant correlation coefficient was obtained using the 

above procedure (see the section 2.2.3). If the activation 

index sequences in one of the groups were significantly 

correlated with one of the behavioral indexes for each IC, 

we considered this IC to be a candidate IC reflecting 

modulation by behavior for further analysis. 

3. Results 

3.1.  Time series of musical Features 

We extracted five long-term musical features using 

MIRtoolbox 49 with 3 seconds time window and 2 

seconds overlap, yielding 1 Hz sampling rate of time 

courses. They include two tonal features, Mode and Key 

Clarity, and three rhythmic features, Fluctuation 

Centroid, Fluctuation Entropy, and Pulse Clarity. The 

time courses of these five features have 512 samples with 

1Hz sampling rate, which could match the size and 

sampling rate of the temporal courses of the ICs extracted 

from EEG. We correlated those time series of musical 

features with the temporal courses of the extracted 

components to select the music-induced components.  

3.2. Stability analysis of ICA decomposition 

25 ICs were extracted by Icasso with 100 repeated runs 

for the concatenated data and calculated the stability 

index 𝐼𝑞  according to Eq. 1. Fig. 2 demonstrates the 

magnitudes of Iq, larger than 0.7 for the majority of ICs. 

The 25 ICs were isolated from each other from the 

viewpoint of cluster. Hence, the ICA decomposition was 

reliable and the estimated results in the current study 

could be considered for further analysis. 

3.3. Notable components from ICA decomposition 

After 25 ICs derived from combined group data, we 

visualized the spatial profile, spectral profile, the number 

of subjects whose time courses were associated with the 

time courses of each musical feature in each group, the 

correlation of behavioral data (depressive symptoms) and 

the activation magnitude differences between groups for 

each IC. Fig. 3 demonstrates seven ICs showing group 

difference between CON and MDD group. 

3.3.1.  Components associated with the CON group 

We found one unilateral auditory component at ~20 Hz 

(see Fig. 3 I). In the control group there were 12 subjects 

whose temporal courses were significantly correlated 

with musical features and 5 subjects whose temporal 

courses were significantly correlated with musical 

features in the MDD group, suggesting this ~20 Hz 

auditory network in healthy subjects is more engaged in 

musical feature processing than in the participants with 

MDD. No significant correlations between the activation 

magnitudes with behavioral data were observed in either 

group. There was also no significant difference between 

the two groups about the activation index. A bilateral 15 

Hz sensorimotor component was found (see Fig. 3 II), 

which has been previously observed with fMRI of 

healthy subjects listening to music 46. In the control 

group, 11 subjects’ temporal courses were associated 

with stimuli features; in the MDD group the temporal 

courses of eight subjects were associated with stimuli 

features. The activation strength of the MDD group was 

significantly correlated with HAMA scores. We also 

found a unilateral visual component at ~10 Hz (Fig. 3 

III). There were 11 control subjects and 5 MDD subjects 

whose temporal courses were significantly correlated 

with musical features. The statistical analysis revealed no 

 

Fig. 2.  Iq of each extracted component. 
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significant difference between the two groups. Also, this 

component was unrelated to the behavioral scores.  

3.3.2.  Components associated with the MDD group 

A unilateral lateral visual component (located in the left 

angular gyrus) at ~10 Hz (Fig. 3 IV) was found. There 

were 11 subjects with MDD and 6 healthy subjects in the 

control group whose time courses significantly correlated 

with musical features. Moreover, the activation 

magnitude of subjects with MDD was significantly 

correlated with cognitive score (quantified by the 

MMSE) and smaller than the activation magnitude of 

healthy subjects (p < 0.01). 
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Fig. 3.  A. Spatial map averaging the independent component across the Fourier bins; B. Spectra averaging the independent component 

across source points exceeding the 95th percentile threshold; C. Number of subjects whose temporal courses significantly correlated 

with musical features; D. Correlation coefficient between the variance of time courses with behavioral features (asterisk reflects 

significant correlation). E. Differences in activation strength between control and MDD groups. 
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3.3.3.  Components with a significant difference 

between groups 

A unilateral lateral visual component (located in the left 

angular gyrus) at ~10 Hz. We also found a sensorimotor 

component at ~ 5 Hz and two lateral visual components 

at ~15 Hz and ~ 30 Hz respectively (Fig. 3 V, VI&VII). 

For these components, the number of participants 

showing temporal courses significantly correlated with 

the musical features was less than half of the participants 

in both groups. The power of the ~5 Hz sensorimotor 

(located in the postcentral gyrus) component in the 

control group was negatively correlated with HSRD 

score. The activation of this network in the control group 

was stronger than the activation in MDD group (p < 0.01) 

(Fig. 3 V). The amplitude of the ~15 Hz lateral visual 

network component (located in left angular gyrus) of the 

MDD group was positively correlated with HSRD score. 

There was a significant difference in the activation of the 

networks between groups (p < 0.05; Fig. 3 VI). For the 

~30 Hz lateral visual network component (also located in 

the left angular gyrus), the power of the subjects with 

MDD was negatively correlated with HRSD score. The 

power of the healthy subjects was negatively correlated 

with MMSE. The average activation of the subjects with 

MDD was stronger than that of the healthy subjects (Fig. 

3 VII). 

4. Discussion 

In this study, we investigated group differences in 

frequency-specific brain patterns during music listening 

between participants with MDD and healthy controls 

using a technique combining group-level spatial Fourier 

ICA and acoustic feature extraction. The spatial Fourier 

ICA was used to extract independent spatio-spectral 

profiles. The individual temporal courses of the 

frequency-dependent networks were obtained by 

dividing the row of mixing matrix into N (number of 

subjects) segments. Then, musical features were 

extracted by music information retrieval. Music-induced 

frequency-specific networks for each group were 

identified by correlating temporal courses of spatio-

spectral patterns with time series of the musical features. 

We further examined between group differences of 

network activation magnitude via statistical analysis and 

analyzed how magnitudes of networks were modulated 

by behavioral factors (specifically, depressive 

symptoms). The applied spatial Fourier ICA technique 

was first presented by Ramkumar and colleagues 55, 

which was able to capture the interactions between 

spatial profiles and spectral band. Shortly thereafter, a 

group-level spatial ICA was performed on a single 

healthy group of subjects to probe resting-state spatio-

spectral patterns 56. Recently, Zhu et al. also applied 

individual spatial Fourier ICA to the ongoing EEG of 

healthy subjects during music listening and found the 

brain networks of music processing to be frequency-

dependent 29. For spatial Fourier ICA, the meaning of 

independence is different from the meaning of 

independence in standard spatial ICA as used in fMRI 56 

or as a feature extractor 59. In spatial ICA, the 

independent components should be a set of statistically 

independent spatial maps together with similar temporal 

courses. Likewise, in spatial Fourier ICA, the estimated 

components should be independent in the spatio-spectral 

domain. This means that two components might be 

strongly overlapping in spatial domain, if they have very 

different, completely non-overlapping spectral profiles; 

the theoretical details can be found in previous studies 55, 

56. Until now, studies using this spatial Fourier ICA 

approach have focused on a single group of healthy 

subjects, and no studies have yet been presented for 

group comparisons under naturalistic music listening. 

We extended the spatial Fourier ICA to enable group 

comparisons under music listening and demonstrated the 

technique in a sample of subjects with MDD. In addition, 

the stability of the decomposition was examined by a 

well characterized tool, Icasso 57. Nugent et al. also 

developed a MEG-ICA technique to examine the group-

level differences in resting-state networks in subjects 

with MDD, which only investigated the beta frequency 

band 60.  

We applied the proposed method to a group of 20 

subjects with MDD under a music listening condition. 

We observed a ~20 Hz unilateral auditory component, a 

~15 Hz bilateral sensorimotor component, and a ~10 Hz 

medial visual component associated with music 

processing among most healthy controls (see Fig. 3 I, 

II&III).  The ~20 Hz unilateral auditory component and 

~10 Hz medial visual component are in line with our 

previous work where the individual-level spatial ICA 

was performed to analyze electrophysiological networks 

of healthy subjects during a similar music listening 

condition 29. The ~15 Hz bilateral sensorimotor 

component emerged in the current group-level analysis. 

Those brain networks seem to be more involved in music 

processing in healthy subjects than in patients with 



Zhu et al. 
 

10 

MDD. In other words, these spatial spectral patterns of 

MDD patients were not sensitive to natural music due to 

the severity of self-focused rumination in depressive 

patients. MDD has been linked to the predominance of 

default mode network over the task positive network, 

which is considered as a neurobiological basis for 

ruminative responding and multiple studies have 

explored the depression-related changes in oscillatory 

brain activity 61-63. Functional magnetic resonance 

imaging (fMRI) uncovered a modification in the 

functioning of frontal and temporal regions 64. In 

addition, the magnitude of activation of the ~15 Hz 

bilateral sensorimotor component was modulated by 

anxiety score in the MDD group, seemingly indicating 

that depressive symptoms were associated with altered 

sensorimotor areas at the beta frequency band. Those 

results were consistent with earlier studies, 

demonstrating that depressive symptoms were associated 

with electrophysiological changes. In the resting state 

condition, major depression disorder was characterized 

by unique EEG rhythm in beta frequencies that were 

dominant in relation to delta, theta, and alpha oscillations 

and beta oscillations were associated with higher 

cognitive systems 65. 

The ~10 Hz temporo-occipital component with 

spatial maxima over the left angular gyrus was engaged 

in music processing among most subjects with MDD (see 

Fig. 3 IV).  The activation magnitude of this pattern was 

modulated by cognitive score in MDD subjects. 

Furthermore, the activation magnitude in the control 

group was significantly stronger than in the MDD group 

(p < 0.01). Previous studies demonstrated that 

connectivity of the temporal cortex centered in the 

precentral and angular gyri was increased in the MDD 

group 60. In contrast, in the current study, the activation 

magnitude of the angular gyri was weaker in MDD 

participants. Alpha power in the left hemisphere was 

significantly larger than in the right. This alpha 

asymmetry was related to depressive mood, which 

corresponds to findings from an earlier study 66.  

The activation magnitude of the ~5 Hz sensorimotor 

network was larger in the control group than in the MDD 

group (p <0.001). A ~15 Hz and ~30 Hz temporo-

occipital components were both examined. The 

magnitude of the ~15 Hz temporo-occipital network was 

positively correlated with HRSD depressive symptoms in 

the MDD group and was weaker than in the control 

group. In contrast, the activation magnitude of the ~30 

Hz network was positively correlated with HRSD 

depressive symptom and was larger than in the CON 

group. Although the brain areas are the same in both 

components, the spectral peak is different. These results 

suggest that MDD is associated with disrupted oscillatory 

brain networks (see review by 67).  

In all group ICA-based methods, a general question 

is which dimension is consistent across subjects and 

should be concatenated. In our previous work, we applied 

individual spatial Fourier ICA to ongoing EEG under a 

music listening condition; the common patterns in 

spectro-spatial domain were confirmed across healthy 

subjects but temporal courses were quite different among 

subjects 29. In addition, Nugent et al. applied group-level 

MEG-ICA techniques to patients with MDD and heathy 

subjects to examine group difference in connectivity, 

where temporal concatenation in group ICA was 

performed and all subjects shared the same mixing matrix 

in spatial dimension 60. Thus, those prior works 

motivated us to adopt a standard approach of temporal 

concatenation across subjects to organize the group data, 

which imposes a degree of spectro-spatial consistency 

due to the shared components in the spectro-spatial 

domain. Generally, concatenation in time dimension 

might result in spurious correlations in the data. Despite 

the fact that we are not aware of any study that has shown 

such spurious correlations (whether linear or nonlinear) 

in the context of group-level ICA, such a possibility 

could not be completely ruled out 56. Moreover, the three-

way tensor data were rearranged into a two-way matrix 

to facilitate ICA estimation, which may inevitably lose 

some potentially existing interactions between the spatial 

mode and the spectral mode. In the future, we would 

apply tensor decomposition to probe the underling 

interactions among multiple modes of the tensor 68-70. We 

here used the tango Adios Nonino by Astor Piazzolla 

since dynamic functional networks during this piece of 

music listening are well described using healthy subjects 

in our previous studies 46, 47, where the spatial or temporal 

patterns of brain activity during listening to this music are 

synchronized participants. Another limitation of the 

current study is that a template head model was adopted 

for co-registration instead of individual MRI-derived 

head shape models. Due to the measurement of the 

position of each electrode for co-registration, the 

individual head shape was taken into account by the 

Brainstorm toolbox; thus, the accurate source 

localization of observed effects should be interpreted 
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with caution. The most important limitation of this study 

is the small sample size (20 control subjects, 20 MDD 

subjects). Therefore, the results require replication in an 

independent dataset. In addition, the design of this study 

did not allow us to compare gender differences. Future 

studies may investigate the variants of gender. 

5. Conclusions 

We proposed an approach combining extended group 

spatial Fourier ICA and acoustic feature extraction to 

investigate the group differences in frequency-specific 

networks under music listening conditions between 

MDD subjects and healthy control subjects. We also 

examined the relationship between depressive symptoms 

(measured by self-report questionnaire) and frequency-

specific patterns. The results were partly in agreement 

with those reported in earlier literature on MDD using 

fMRI and MEG/EEG and demonstrated the flexibility of 

group ICA to study disrupted brain oscillations in 

psychiatric disorders. 
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