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A B S T R A C T

Efficient neuronal communication between brain regions through oscillatory synchronization at certain fre-
quencies is necessary for cognition. Such synchronized networks are transient and dynamic, established on the
timescale of milliseconds in order to support ongoing cognitive operations. However, few studies characterizing
dynamic electrophysiological brain networks have simultaneously accounted for temporal non-stationarity,
spectral structure, and spatial properties. Here, we propose an analysis framework for characterizing the large-
scale phase-coupling network dynamics during task performance using magnetoencephalography (MEG). We
exploit the high spatiotemporal resolution of MEG to measure time-frequency dynamics of connectivity between
parcellated brain regions, yielding data in tensor format. We then use a tensor component analysis (TCA)-based
procedure to identify the spatio-temporal-spectral modes of covariation among separate regions in the human
brain. We validate our pipeline using MEG data recorded during a hand movement task, extracting a transient
motor network with beta-dominant spectral mode, which is significantly modulated by the movement task. Next,
we apply the proposed pipeline to explore brain networks that support cognitive operations during a working
memory task. The derived results demonstrate the temporal formation and dissolution of multiple phase-coupled
networks with specific spectral modes, which are associated with face recognition, vision, and movement. The
proposed pipeline can characterize the spectro-temporal dynamics of functional connectivity in the brain on the
subsecond timescale, commensurate with that of cognitive performance.

1. Introduction

The brain is composed of billions of interconnected neurons, forming
an extremely complex dynamic system in which populations of neurons
are organized into functional units with specific information-processing
capabilities (Babiloni et al., 2005; Hillebrand et al., 2012). Yet, effi-
cient neuronal coordination between these spatially separated units is
necessary for cognitive functions (Salinas and Sejnowski, 2001; Siegel
et al., 2012; Varela et al., 2001). The interactions among distributed
regions through oscillatory synchronization may provide a possible
mechanism of such coordination (Fries, 2005, 2015). In other words,

neuronal populations transmit information by coordinating their oscil-
latory activity with the oscillations of the receptor population at certain
frequencies (Vidaurre et al., 2018). Moreover, different oscillatory pat-
terns (i.e., different frequencies) provide the basis for different functions
(Buzs�aki and Draguhn, 2004; Vidaurre et al., 2018). Meanwhile,
phase-coupling between separate populations of neurons in specific fre-
quency rhythms has been well-established as a mechanism for regulating
the integration and flow of cognitive contents (Engel et al., 2013; Salinas
and Sejnowski, 2001; Vidaurre et al., 2018). It has also been shown that
such frequency-specific phase-coupling plays an important role in task
performance, in which task-related information is transmitted through
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phase-locking across spatially distributed cortical regions (Bola and
Sabel, 2015; Fries, 2015).

Magnetoencephalography (MEG) recordings have demonstrated that
large-scale networks activated in cognitive tasks involve different fre-
quency bands in their communications. For instance, the connectivity
between the left and the right motor regions, quantified by the correla-
tion of band-limited power, is maximized in the beta band (13–30 Hz),
but not significant at low frequencies (1–8 Hz) or high frequency (i.e.
>40 Hz) (Brookes et al., 2012a,b; Brookes et al., 2014; Brookes et al.,
2012a,b; Hipp et al., 2012). Moreover, certain frequency bands are
related to distinct cognitions. For example, electrophysiological studies
of working memory have shown that power and coherence in the beta
band decrease with increased memory load in the frontoparietal
network. However, the power in theta the band only increases in the
frontal regions, while the power in the alpha band exhibits a reduction
with increased task load in the parietal nodes (Brookes et al., 2012a,b;
Brookes et al., 2014). These findings imply that connectivity patterns at
distinct frequency bands may subserve different cognitive functions.

In addition to specificity in spectral features, functional networks
exhibit highly temporally variable neuronal dynamics on rapid time-
scales (Bola and Sabel, 2015; Kopell et al., 2014). In order to effectively
track such network dynamics, many studies have explored the organi-
zation of brain functional networks using MEG, since the temporal
richness of MEG can match the rapid timescales of the brain’s functional
connectivity (O’Neill et al., 2017; Sch€olvinck et al., 2013; Tewarie et al.,
2019b). For example, Vidaurre and colleagues have published multiple
papers using a set of methods based on the Hidden Markov Model,
showing that functional brain networks reorganize and coordinate
transiently on the timescale of milliseconds (Baker et al., 2014; Quinn
et al., 2018; Vidaurre et al., 2018; Vidaurre et al., 2017). O’Neill et al.
proposed an independent component analysis (ICA)-based method for
time-varying functional connectivity, demonstrating the temporal evo-
lution of dynamic networks at a specific frequency band on the timescale
of seconds during a task (O’Neill et al., 2017). Lachaux and colleagues
presented a practical method based on phase-locking for the direct
quantification of frequency-specific synchronization with time resolution
at the millisecond scale (J. P. Lachaux, Rodriguez, Martinerie and Varela,
1999; Varela et al., 2001). Also, the brain networks are recently under-
stood as a multi-scale network and can be characterized over temporal
scales with precision ranging from sub-millisecond to that of the entire
lifespan (Betzel and Bassett, 2017; Betzel et al., 2016; Khambhati et al.,
2019).

Considering the temporal non-stationarity and frequency specificity
of the functional connectivity, previously applied methods typically
required pre-specification of a frequency band and/or a time window
before connectivity calculation. Those methods need to filter the neu-
roimaging data into specific frequency bands and examine the temporal
dynamics of interactions for one specific frequency band by one (de
Pasquale et al., 2012; de Pasquale et al., 2016). For examples, Betti et al.
linked the dynamics of formation and dissolution of networks and of hub
networks during movie observation to the one occurring during resting
stage using a fixed frequency band (Betti et al., 2018; Betti et al., 2013).
O’Neill et al. provided an overview of the studies on the dynamics of
connectivity carried out with fixed frequency intervals but without
pre-specification of the time window (O’Neill et al., 2018; O’Neill et al.,
2015). However, the above-mentioned methods were reliant on a priori
selection of frequency bands, and few studies have attempted to explore
the formation and dissolution of the frequency-dependent dynamic brain
networks during task performance within a completely data-driven
approach.

In the current study, we undertake an analysis of the spectral features
and temporal evolution of dynamic connectivity during a task. Our
proposed framework is based on the measurement of the time-frequency
domain connectivity between pairs of separate brain regions predefined
through cortical parcellation.Weighted phase lag index (wPLI) is used as a
means of quantifying the connectivity since it is insensitive to signal

leakage and similar bias effects (Hillebrand et al., 2012; Palva et al.,
2018; Vinck et al., 2011). After calculation of the wPLI for each time
point and frequency point, we construct a third-order tensor (a
three-dimensional data array) including frequency, time, and connec-
tivity (vectorized upper triangular parts of the connectivity matrix). The
three-dimensional data is then analyzed using tensor component analysis
(TCA), which is a multi-dimensional decomposition technique and is an
extension of matrix factorization (e.g., principal component analysis
(PCA) or ICA). TCA can extract separate components with
low-dimensional features (factors), each of which corresponds to a
functional connectivity pattern with rapidly temporal dynamics and
distinct spectral dynamics. It should be noted that unlike PCA or ICA, the
factors extracted by tensor decomposition do not require orthogonality or
independence. According to this property, tensor decomposition can
achieve a demixing of high-dimensional data and examine the interac-
tion across different modalities (Zhou and Cichocki, 2012; Zhou et al.,
2016). For example, in an EEG study, three tensor modes could corre-
spond to time, frequency, and channel (Mørup et al., 2006). In fMRI
studies, the different modes could be voxel, time, and patient (Hunyadi
et al., 2017). In neurophysiological measurements, they could span
neuron, time, and trial (Williams et al., 2018). Previous TCA-based
studies of brain connectivity mainly applied TCA to channel-level EEG
data to detect the change points of the dynamic network states (Liu et al.,
2014; Mahyari and Aviyente, 2014; Mahyari et al., 2016; Samdin et al.,
2016) and examine the spatial-temporal properties of the network
community (Al-sharoa, Al-khassaweneh, & Aviyente, 2018; Ozdemir
et al., 2017; Tang et al., 2019). Also, TCA was applied to EEG channel
level connectivity over time, frequency and subjects to explore the con-
nectivity patterns within the considered electrodes (Pester et al., 2015),
and to ongoing EEG data over temporal sliding windows, frequency, and
subjects to link musical features to brain networks (Zhu et al., 2019a,b).
Here distinct from this, we applied TCA to atlas-based MEG data over
network connectivity, time and frequency to provide a pipeline to track
the temporal evolution of frequency-dependent functional networks at
the millisecond scale during task performance. We performed tensor
decomposition to extract three interacted, low-dimensional descriptions
of time-frequency phase-coupling networks, which includes connectivity
factors reflecting functional network patterns, temporal factors reflecting
rapidly temporal evolution of the functional networks, and the spectral
factors reflecting spectral features of networks. The proposed pipeline is
completely data-driven and enables the characterization of the temporal,
spectral, and spatial features of the electrophysiological network con-
nectivity all at once. In other words, this allows us to identify which
involved frequency bands, where and when significant modulations in
connectivity occur.

2. Material and methods

2.1. Data description

We analyzed MEG data from the human connectome project (HCP;
www.humanconnectome.org), including a motor task and an N-back
working memory task (Larson-Prior et al., 2013). Sixty-two subjects
participated in the motor task and 82 subjects in the working memory
task. Most were right-handed as measured with the Edinburgh Handed-
ness Inventory, with a mean lateralization quotient of 65% and SD¼ 44%
(Oldfield, 1971). Data were recorded using a whole-head 248-channel
magnetometer system (MAGNES 3600 WH, 4D Neuroimaging, San
Diego, CA) with the participants in supine position. Data were continu-
ously recorded with a sampling rate of 2034.5 Hz and a bandwidth of
DC-400 Hz. Digitization of the participants’ head shape and of the lo-
cations of the fiducial coils was accomplished with a Polhemus 3Space
Fasttrak system. Participants performed a sequence of tasks, described in
detail in the reference manual provided by HCP. Just prior to the N-back
working memory task the participant underwent three runs of approxi-
mately 6 min of resting-state MEG recording.
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During the motor task, participants were presented with visual cues
instructing themovement of either the right hand, left hand, right foot, or
left foot. Movements were paced with a visual cue, which was presented
in a blocked design. Each block started with an instruction screen, indi-
cating the limb (arm or leg) and the side to be involved in the current
block. A set of pacing stimuli were presented in sequence, each one
instructing the subject to make a brisk movement. The pacing stimulus
was composed of a small arrow in the center of the screen (see Fig. 1).
The interval between consecutive stimuli was fixed to 1200 ms. The
arrow stayed on the screen for 150 ms and the screen was black for the
remaining 1050 ms. There were 8 blocks of movement per motor
effector. 10 pacing stimuli were presented in sequence. This yielded in
total of 80 movements per motor effector. Here, for simplicity, we only
used data with right- and left-hand movements.

During the N-back working memory task, subjects were presented
with pictures of tools or faces. There were two memory load conditions:
0-back and 2-back tasks. 0-back task is a match-to-sample condition
during which a cue target image was presented at the beginning of a
block. A set of images were presented in a sequence, and each of them
was displayed for 2000 ms. At the end of this interval, a button press had
to be executed by participants with the index or middle finger of the right
hand as to whether this current image matched the target or not. For the
2-back condition block, participants were presented with a sequence of
images and had to respond whether each image matched the image two
positions earlier or not. The response had to take place within a 500-ms
period after stimulus presentation, during which a fixation cross was
presented on the center of the screen. Participants were presented with 8
blocks in the 2-back condition. A sequence of 10 images is presented in
each block. This yielded in total number of 80 trials.

2.2. Preprocessing and source reconstruction

We used the same criteria set in the HCP pipelines to remove bad
channels, segments and bad independent components.1 Briefly, epochs
had been extracted from the continuous recording. Epochs containing
superconducting quantum interference device (SQUID) jumps, bad sen-
sors, or bad segments, defined as excessive signal amplitude changes >
e10�12T, were excluded from further processing. Eye movement-related
signals and cardiac signals had been identified with ICA and projected
out of the data. For the motor task, trial duration was set from �1.2 to
1.2 s relative to the onset of the arrow that instructs subjects to execute
the movement. For the working memory task, trial duration was set from
�1.5 to 2.5 s relative to the onset of the image that subjects had to match
or not with the target image. After bandpass filtering (1–48 Hz), the data
were down-sampled to 256 Hz. Following this preprocessing, the cortical

surface of the brain was reconstructed from an anatomical individual
MRI offered by HCP. The reconstructed cortical surface was decimated to
4098 evenly distributed vertices per hemisphere. The preprocessed data
epochs were used to compute the inverse model, which was estimated
using cortically constrained and depth-weighted (p ¼ 0.8) L2 minimum-
norm estimate (wMNE) (Lin et al., 2006). The noise covariance matrix
was calculated from the empty-room recordings, separately for each
subject’s data provided by HCP. The cortical surface was then parcellated
into 68 anatomical regions based on the Desikan-Killiany Atlas (Desikan
et al., 2006). This atlas discretized the neocortex into 34 parcels (areas)
per hemisphere. For each parcel, we performed a principal component
analysis to extract spatially orthogonal components that describe the
activity, ordered by amount of variance explained. We selected the first
principal component as a representation of the parcel’s time course of
activity. Thus, for each trial, a source-level data matrix M was created
with dimension nn � ns, where nn ¼ 68 represented the number of
anatomical regions and ns represented the number of samples (ns ¼ 615
for the motor task, ns ¼ 1024 for the working memory task). The main
steps of the subsequent data processing pipeline are outlined in Fig. 2.

2.3. Spectral decomposition

To estimate the spectral densities of the parcellated time-series data,
continuous wavelet transform with Complex Morlet wavelets was per-
formed on source space data matrix M for a single trial. A total of 42
linearly spaced frequencies and full time points were estimated. The
wavelet contained three cycles at the lowest frequency (4 Hz); the
number of cycles increased up to 15 cycles at the highest frequency (45
Hz), and 42 frequency points from 4 Hz to 45 Hz were obtained. Thus, for
each trial, a third-order tensor was obtained with dimension nn � ns � nf ,
where nf ¼ 42 represented the number of frequency points.

2.4. Functional connectivity estimation

To estimate phase-coupling between all pairs of regions for each
frequency and time point, wPLI (Vinck et al., 2011) was computed; i.e.,
the sign of the phase difference between two signals is weighted by the
magnitude of the imaginary component of the cross-spectrum:

wPLIðf ;tÞ ¼
��PN

n¼1

�jim�Sn1ðf ; tÞSn*2 ðf ; tÞ�jsign�im�Sn1ðf ; tÞSn*2 ðf ; tÞ�����PN
n¼1

��im�Sn1ðf ; tÞSn*2 ðf ; tÞ��� ; (1)

where Sn1ðf ; tÞ and Sn2ðf ; tÞ are wavelet-decomposed time-frequency rep-
resentations from regions 1 and region 2 respectively, from trial n and for
frequency point f and time point t. N is the number of trials. * represents
the complex conjugate, imðÞ is the imaginary part of a complex value, and
jj represents an absolute value operation. For each subject, a third-order
tensor of connections P was created with dimension nc � ns � nf , where

Fig. 1. Experiment task. A) Right hand movements in motor task paradigm. Block begins with a 3 s cue instructing the participant which limb to move in that trial. B)
Two-back condition in the working memory task. Two-back blocks were signaled by a presentation of “2-back” for 2500 ms. Participants indicated whether the
presented stimulus matched the stimulus two trials earlier.

1 https://www.humanconnectome.org/documentation/MEG/MEG1
_Release_Reference_Manual.pdf.
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nc ¼ 2278 denotes the number of pairs of regions (68*ð68 � 1Þ= 2).
These three-way arrays were then concatenated over time to generate a
new tensor X with dimension nc � nt � nf , where nt ¼ ns* np and np
denotes the number of the participants (np ¼ 61 for the motor task and
np ¼ 83 for the working memory task).

2.5. Tensor decomposition

The most common method for dimensionality reduction and
component analysis of electrophysiological data has been based on
decomposition techniques such as PCA and ICA. However, these two-way
analysis techniques commonly applied on matrices may fail to find the
underlying structures in multi-dimensional data sets (Cong et al., 2012;
Williams et al., 2018). Here, we use the CANDECOMP/PARAFAC (CP)
model (Sidiropoulos et al., 2017), a direct extension of bilinear factor
models to multilinear data, to identify a set of low-dimensional compo-
nents characterizing variability along each of the modalities. A brief
description of the CP model follows.

Each element in the obtained tensor X 2 R
nc�nt�nf
þ , xc;f ;t denotes the

connection (wPLI) between two regions at time point t within frequency
bin f . Here, the indices c, t, and f each range from 1 to nc, ns, and nf ,
respectively. It should be noted that all the elements are non-negative,
since wPLI takes values between 0 and 1. CP decomposition approxi-
mates the data as a sum of outer products of three vectors producing an
additional set of low-dimensional factors, which can be described as:

X �
XJ

j¼1

aj ∘ bj ∘ cj; (2)

where operator ∘ represents the outer product of vectors, and J is the
number of extracted components. aj; bj, and cj (n ¼ 1; 2;⋯; J) are the

factor vectors. We can think of aj as the functional network pattern across
the whole-brain connections, and we can consider bj as spectral factors
across frequency. These connectivity factors and spectral factors consti-
tute a structure that is common across time. The third set of factors, cj,
can be considered as temporal factors, which characterizes the temporal
evolution of the frequency-specific functional connectivity patterns
identified by connection and spectral factors. Thus, TCA for wPLI data
can capture temporal dynamics of the functional connectivity on a
timescale of milliseconds with a specific spectral feature. Such frequency-
specific connectivity patterns may be modulated by a task across time
during task performance. In addition, another benefit of TCA is a
dimension reduction of the original high-dimensional data, reducing nc �
ns � nf data points to Jðnc þns þnf Þ elements.

The non-negative CP model optimization is to solve the following
minimization problem:

min
A;B;C

1
2

�����X �
XJ

j¼1

aj ∘ bj ∘ cj

�����
2

F

; (3)

where F represents the Frobenius norm. Matrix A ¼ ½a1; a2;⋯; aj� is the
connectivity factor matrix, B ¼ ½b1; b2;⋯; bj� is spectral factor matrix,
and C ¼ ½c1; c2;⋯; cj� is temporal factor matrix. Like many matrix
factorization methods, the CP model can only be fit by iterative optimi-
zation algorithms. Such procedures may converge in suboptimal local
minima, but in other applications, all estimations for many runs have
converged to similar reconstruction errors (Cong et al., 2012; Mack-
evicius et al., 2019; Williams et al., 2018). For example, Williams et al.
applied the TCA to neural data to extract low-dimensional neural dy-
namics across multiple timescales, where the majority of runs for opti-
mization successfully converged with high data fit value (Williams et al.,

Fig. 2. Analysis pipeline. Data were preprocessed, divided into stimulus-locked epochs, and projected into the source-space using the weighted MNE algorithm.
Signals of 68 ROIs based on anatomical brain regions were transformed with a Complex Morlet wavelet. For each time-point and frequency-point, an adjacency matrix
containing wPLI estimates was then generated (vectorized using upper triangular parts). For each subject, a three-way tensor (with time by frequency by connection)
was obtained. These individual wPLI (average across trails) tensors were concatenated across subjects in temporal dimension. Nonnegative CANDECOMP/PARAFAC
(CP) decomposition was performed on the temporally concatenated tensor to extracted low-dimensional components including temporal factors, spectral factors, and
connectivity factors.
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2018). In the current study, we apply the classic method of alternating
least-squares (ALS) to estimate the factor matrices (Cichocki et al., 2015;
Kolda and Bader, 2009). To solve the minimization problem in Equation
(3), the ALS algorithm fixes two of the factor matrices and optimizes over
the third one. This is a least-squares subproblem that is convex and has a
closed-form solution. For illustration, consider estimating the connec-
tivity factor matrices A, while fixing the spectral factor matrices B and
temporal factor matrices C. This yields in the following updating rule:

A ← argmin ~A

1
2

�����X �
XJ

j¼1

aj ∘ bj ∘ cj

�����
2

F

; (4)

which can be estimated as a linear least-squares problem. We terminated
the CP decomposition process when the absolute difference value of data
fitting of the adjacent two iterations was less than very small positive
value such as 1e� 8, or the maximum number of iterations was more
than 1000. Here, TCA was performed on temporally concatenated data
across subjects. This means that the connectivity factor and the spectral
factor of the brain networks (components) are common to all subjects but
the temporal factor is subject-dependent. Each subject has their own
temporal courses, representing the time evolution of the frequency-
specific networks at each time points. The ALS algorithm is available in
several open-source toolboxes (Bader and Kolda, 2012; Vervliet et al.,
2016).

2.6. Selection of component number

In the application of tensor decomposition, a crucial issue is the
determination of the number of components to be extracted. Actually, the
choice of the number of components to extract is an inherent problem of
model order selection, which is usually for the linear transform model or
other dimensionality reduction methods (Cong et al., 2012, 2013; Mørup
and Hansen, 2009). Although many different methods have been
developed in the past few years, there does not exist a perfect solution for
all conditions. Here, we used the DIFFIT method as a reference to inform
this choice. DIFFIT refers to the difference in data fitting, and is calcu-
lated based on model reconstruction error and the explained variance
(Timmerman and Kiers, 2000; Wang et al., 2018). The reconstruction
error of the CP model is defined as

ReErrðJÞ ¼

���X �PJ
j¼1aj ∘ bj ∘ cj

���
F

jXjF
: (5)

Reconstruction error provides a metric analogous to the fraction of
unexplained variance often used in PCA, since it is normalized to range
between 0 and 1. Let the number of components J 2 ½1; J �, where J is
the empirically maximal number of underlying components. A fit is the
variance of raw data explained by a proposed model and can be obtained
as

FitðJÞ ¼ 1� ReErrðJÞ ¼ 1�

���X �PJ
j¼1aj ∘ bj ∘ cj

���
F

jXjF
: (6)

Unlike PCA, the optimization procedure of tensor decomposition may
have suboptimal solutions (local minima), and there is no guarantee that
optimization routines will find the best set of parameters for decompo-
sition. Thus, we run the optimization algorithm underlying the CP model
at each value of J 20 times from random initial conditions, and the
average data fitting FitðJÞ is calculated across many runs. Then, the dif-
ference fit of the two adjacent fits is

DIFðJÞ¼FitðJÞ � FitðJ � 1Þ: (7)

Next, the ratio of the adjacent difference fits reads as

DIFFITðJÞ¼ DIFðJÞ
DIFðJ þ 1Þ: (8)

The model ~J with the largest DIFFIT value is considered as the
appropriate tensor factorization model for the raw data tensor.

2.7. Testing the task-modulation connectivity

The above analyses yielded a set of ~J brain networks (TCA compo-
nents) with distinct spectral features, temporal courses, and connectivity
patterns. Here, we sought to determine which extracted components
were significantly modulated by the tasks. It should be noted that our
procedure was based on previously theory, which has been well
described elsewhere (O’Neill et al., 2017; Winkler et al., 2014; Zhu et al.,
2019a,b). We first averaged the temporal factor matrix C (with a
dimension of nsnp � ~J) across subjects, yielding a new temporal matrix
C (with a dimension of ns � ~J ) containing ~J subject-averaged temporal
courses. After this, an empirical null distribution was constructed based
on phase randomization (Brookes et al., 2014).

We defined a “sham”matrix, ~Conset, which was constructed in exactly
the same way as C, but prior to averaging over subjects, the onset of
individual temporal courses was randomly shuffled based on phase-
randomization. The phase-randomization was computed by taking the
Fourier transform, randomizing the phase angle, and then transforming
back. The properties of the derived time series of each individual subject
were exactly preserved in the spectral domain. We reasoned that if no
task induced response was expected, the randomly shuffled onset times
would be meaningless, and therefore the magnitudes of fluctuations in
~Conset and C would match. However, if the individual temporal courses
contained time-locked responses in brain connectivity, which were
robust over subjects, then these would be preserved in C but diminished
in ~Conset. This procedure was repeated 5000 times to generate an
empirical null distribution for each extracted component.

A component was considered significant if, at any one time point in
the subject average, the corresponding column of C fluctuated such that
it fell outside a threshold defined by the null distribution (randomized
onset). The threshold for significance was defined at level P < 0:05. This
significant level was corrected based on Bonferroni correction for mul-
tiple comparisons across the multiple (~J) components. In addition, a two-
tailed distribution was allowed since the magnitude of the average
temporal courses could be either greater than, or less than the null dis-
tribution. Thus, the threshold for significance was set at
Pcorrct < 0:05=ð2 � ~JÞ ¼ 0:025=~J.

3. Results

In the following section, we show the flexibility of our framework in
the real MEG dataset. However, our proposed framework was also vali-
dated in simulation and compared with permutation test procedure
without TCA (see Supplementary material). These simulation results can
be found in the Appendix.

We firstly ran CP at each value of J—linearly increasing from 1 to 40
(J ¼ 40)—20 times with random initial conditions, which enabled us to
examine whether some runs converged to local minima with low data
fitting value (or high reconstruction error). Fig. 3 demonstrates the
averaged fit values (Fig. 3A), the difference of fit values (DIF) and the
DIFFIT (Fig. 3B). As can be seen that the variance (shaded areas of
Fig. 3A) of the fit values from the 20 times is very low, and reveals that all
runs at fixed component number J yield the same data fitting. For the
motor task, it can be seen that the DIF values become very close to 0 when
the component number J > 20 and a local maximum on DIFFIT at J ¼ 20
emerges. This suggests the data fitting value starts to converge, which can
be also found from the data fitting curve. The data fitting curve also re-
veals that all runs at fixed J yield similar results, indicating that all local
minima in the optimization process are similar to each other and thus are
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presumably similar to the global minimum. Fig. 3B demonstrates that J ¼
25 may be the appropriate model for CP decomposition in the working
memory task since the DIF values are close to 0 after J ¼ 25. Hereinafter,
we set ~J ¼ 20 for the motor task and ~J ¼ 25 for the working memory
task. Note that the DIFFIT method just gives a reference to select the
number of underlying components, and we discuss this further below.

Fig. 4 demonstrates the results of the proposed approach performed
on the movement data. While ~J ¼ 20 rank-1 components were extracted,
here we presented only two brain network patterns that exhibited sig-
nificant task modulation. The other brain networks are shown in the
Supplementary material. In Fig. 4, the right side shows the results of the
left-hand movement data and the left side shows the results of the right-
hand movement data. Each row of Fig. 4 represents a component with
three factors. Fig. 4A demonstrates the connectivity factor representing
the brain network pattern, which is demonstrated in 3D visualization and
thresholded (top 5%) for clarity. Fig. 4B shows the temporal factor
reflecting the time evolution of this network, which is represented as the
associated averaged temporal factor of the individual in C (with a
dimension of ns � ~J ) and plotted by black line. The time line of the
event is marked by the vertical line. The gray shaded area indicates the
null distribution constructed by randomly shuffling the time onset

(~Conset), which is the 95th percentile threshold. Fig. 4C shows the spectral
factor reflecting the oscillatory feature of this network. A network shown
in Row I, representing primary somatosensory and motor regions, is
modulated significantly by the left-hand movement task (Fig. 4B). It is
also found in right-hand movement data depicted in Row III. It should be
noted that the results are slightly different for different sides of the hand
movements. The 3D visualization demonstrates that network connec-
tivity is mainly located in the left primary somatosensory cortex for right-
hand movement (Row I of Fig. 4A), and on the right primary somato-
sensory cortex for the left-hand movement (Row III of Fig. 4A). Fig. 4C in
Rows I and III show the spectral features of the sensorimotor network
modulated by the movement task. It can be clearly seen that the senso-
rimotor network is associated with frequency modes ranging from 15 to
30 Hz, corresponding to the classical beta band. Rows II and IV show
another visual network, modulated significantly by visual cues. The
spectral feature suggests that this visual network is related to the theta
and alpha bands. This spectra-specific visual network is derived from
both left- and right-hand movement tasks.

Fig. 5 demonstrates the results of our analysis pipeline applied to the
2-back working memory data. Obviously, the increased cognitive load
induced by 2-back working memory tasks elicits alterations in a large

Fig. 3. A) Fit value plotted against number of components. B) difference of fit values and the DIFFIT plotted against number of components. For the movement
experiments, we chose 20 components decomposed by the CP model. For the working memory task, 25 components were extracted since the delta fit was relatively
small. It should be noted that the results were robust when the number of components was set from 15 to 25.

Fig. 4. Results of the hand movement experiments. The left side shows the results of the right hands’ movement, and the right side shows the results of the left hands’
movement. The separate columns show A) 3D representation of connectivity factors, thresholded (top 5%) for visualization. Each node indicates one brain region and
darker color of lines shows stronger connections. B) The temporal courses of the network patterns during finger movement task, averaged across subject (black line).
The gray shaded region represents the null distribution based on the hypothesis that the response is not time-locked to the stimulus. C). The spectral mode of the
network. Rows I and III show the beta oscillatory motor networks modulated significantly by movement task. Rows II and IV show the theta oscillatory visual networks
modulated significantly by the presentation of cross arrows.
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number of functional networks. We present 10 of the 25 brain networks
extracted that exhibited significant modulation by the 2-back working
memory task. Each row in the column indicates one component with
three factors, including connectivity networks represented as 3D visual-
ization (Fig. 5A), temporal evolution represented as averaged time
courses across subjects alongside a null distribution based on randomly
shuffled time onset (Fig. 5B), and spectral features (Fig. 5C).

Two primary visual networks shown in Rows II and III of Fig. 5 are
significantly modulated by the figure stimuli, which is unsurprising in
light of the visual nature of the task. Their connectivity magnitudes in-
crease by around 200 ms after both presentation and disappearance of
the figure stimuli, but the connectivity during presentation increases
more than during disappearance of the stimuli. Although these two
networks both involve the visual regions, their spectral features are
different. The spectral mode of network II peaks around 5 Hz, spanning
theta and low alpha bands, but the spectral mode of network III peaks
around 13 Hz across high alpha and low beta bands. Row IX, with
spectrum peaking at 10 Hz, demonstrates connections between the pri-
mary visual and parietal regions, showing an increase in connectivity
around 150 ms after the presentation of the figure stimuli. Row I shows a
right-lateralized connection between visual and temporal areas with a
spectral mode spanning the alpha band, which exhibits a significant
enhancement immediately during the appearance of the stimuli. Rows IV
to X show that transient functional networks with distinct spectral fea-
tures form in later task phases. Row IV shows an increase in connectivity

between right frontal areas and temporal areas related to the theta band,
around, 300 ms after presentation of the stimuli. Row X indicates that a
connection between left frontal regions and right temporal regions
emerges by 300 ms after the stimuli, with a spectral feature across theta
and alpha bands. A high-alpha right-lateralized tempo-parietal network
appearing around 400 ms after the stimuli is shown in Row VII. Row VI
shows a bilateral temporal connectivity network with dominated alpha
rhythm, emerging at 600 ms after the stimuli. The network also captures
areas associated with semantic processing and is thus termed the semantic
network. Row VIII highlights a left-lateralized network that incorporates
regions of temporal, parietal, and frontal cortex. The regions implicated
are strongly associated with the production of language as well as shape
and pattern recognition. A beta sensorimotor network is also derived
during feedback. Row V demonstrates that a sensorimotor network
involved in beta rhythm emerges during the execution of the button
press. The connection exhibits strong enhancement in left motor areas,
since participants executed the button press with their right-hand. In
addition, the significant increases span a large range, from 1200 ms to
2000 ms, since the timing of the button press was different for different
subjects. This result is in line with the results of the motor task (Fig. 3). It
is worth noting that the brain areas involved in these networks incor-
porate the primary sensory cortices, association areas, and cognitive
networks that would be associated with semantic processing, face
recognition, and verbalization, and so these networks are plausible given
the task. These are further addressed in our discussion.

Fig. 5. Results of 2-back working memory task. A) 3D network visualization. B) Average temporal course (black line) and null distribution based on randomized onset
times (shaded areas). C) Spectral mode of the network patterns. Row I: right lateralized connections between visual and temporal areas with a spectral mode spanning
alpha band. Rows II and III: primary visual networks with theta and high-alpha dominant spectrum. IV: connections between right frontal areas and temporal areas
related to theta band. V: Beta-specific motor network. VI: a bilateral temporal connectivity network with dominated alpha rhythm. VII: alpha-dependent right lat-
eralized temporo-parietal network. VIII: language-related network. IX: visual to parietal with alpha-dominant spectrum. X: connections between left frontal regions
and right temporal regions.
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4. Discussion

The present study introduced a tensor-based framework for deriving
large-scale phase-coupled network dynamics with distinct spectral fea-
tures. This pipeline allows characterization of transient reconfiguration
of electrophysiological brain networks at the timescale of milliseconds
when applied to MEG data. Previous methods typically required pre-
specification of a frequency band and/or a time window around the
stimuli onset before the connectivity calculation. Then, network dy-
namics were examined using matrix decomposition techniques, such as
ICA and PCA, in a single frequency band. Compared with ICA-based
approaches, the TCA-based framework is completely data-driven and
enables the characterization of the temporal, spectral, and spatial fea-
tures of the electrophysiological network connectivity all at once. Tensor
decomposition can provide dimension reduction for big data and extract
three interacted, low-dimensional patterns representing the high
dimensional time-frequency coupling data. Here, we calculated time-
frequency domain phase-coupled functional connectivity quantified by
wPLI and applied TCA to extract three interacted, low-dimensional de-
scriptions, including a connectivity factor reflecting spatial network
pattern, a temporal factor reflecting rapidly temporal evolution of the
functional networks, and a spectral factor reflecting frequency modes of
networks. By doing so, we identified the temporal dynamics of phase-
coupled networks with specific spectral modes, in a completely data-
driven way. This enabled us to identify where, when, and in which fre-
quency band significant modulations in connectivity occur. We validated
our proposed framework in a simulation (see Appendix) and a simple
movement task compared with the permutation test procedure without
TCA (see Supplementary material). Furthermore, we demonstrated the
utility of our pipeline applied to a complex cognitive task and showed
that frequency-specific functional networks transiently form and dissolve
to allow participants to complete a 2-back working memory task.

Tensor analysis methods have been well investigated from a theo-
retical perspective (Cichocki et al., 2015; Kolda and Bader, 2009; Sidir-
opoulos et al., 2017; Zhou et al., 2015), and applied to a variety of
neuroimaging data (Cong et al., 2015; Spyrou et al., 2019; Williams et al.,
2018; Zhu et al., 2019a,b). Some studies have applied tensor factoriza-
tion to sensor-level EEG data and fMRI data most typically to examine
differences between subjects in extracted multi-features (Cong et al.,
2012, 2013; Kanatsoulis et al., 2019), rather than across functional
connectivity. Some recent studies have examined the temporal evolution
of functional networks based on TCA across adjacency matrix, subjects,
and time, but did not investigate the spectral features, and only studied
channel-level EEG connectivity rather than source-reconstructed MEG
connectivity networks (Spyrou et al., 2019; Tang et al., 2019). Although
TCA was also applied to EEG channel level connectivity over time, fre-
quency and subjects to explore the connectivity patterns within the
considered electrodes (Pester et al., 2015), and to ongoing EEG data over
temporal sliding windows, frequency, and subjects to link musical fea-
tures to brain networks (Zhu et al., 2019a,b), we here applied TCA to
atlas-based source-level MEG data over network connectivity, time and
frequency to explore the formation and dissolution of
frequency-dependent functional networks during task performance. The
introduced MEG-TCA-network pipeline is able to reliably determine
spectral-specific functional networks since functional connectivity is
calculated for a set of atlas-based ROIs in anatomical space that covers
almost the entire brain, aiding the interpretation of MEG functional
network studies, as well as the comparison with other modalities (e.g.
fMRI). By establishing a novel link between tensor analysis and frequency
specific networks, we found that analysis of the extracted factors can
directly identify spatial patterns of functional connectivity with distinct
spectral modes as well as reveal temporal dynamics on the timescale of
milliseconds.

It should be noted that the temporal courses of the functional net-
works shown in Figs. 4 and 5 indicate a decrease and increase in con-
nectivity. That is, the peaks refer to the time points when two or more

brain areas defining a network are most phase-synchronized. Just
because regions involved in networks are not synchronized at particular
time points does not mean that these regions are not engaged in the task.
This is an important point, as many areas involved in networks are likely
to be engaged continuously over the working memory task. In addition,
our pipeline has an excellent temporal resolution since we calculated the
connectivity at each time point. Fig. 4 demonstrates that a beta-
dependent network of brain connections involving primary somatosen-
sory and motor cortices, as well as supplementary motor regions, was
successfully identified based upon the finger movement task, which is in
agreement with the ICA-based study (O’Neill et al., 2017). This senso-
rimotor network was modulated significantly by the finger movement. In
contrast to the motor areas, which engaged in both movements due to
contralateral effects, network connectivity is centered on the right pri-
mary somatosensory cortex for left-hand movement (Row I of Fig. 4A),
and on the left primary somatosensory cortex for right-hand movement
(Row III of Fig. 4A). Another difference of the motor connectivity be-
tween right- and left-hand movement is the greater variability in time
course of the connectivity across subjects during left-hand movements,
since the non-dominant hand was used for the majority of participants.
Furthermore, a primary visual network with spectral modes across the
theta and alpha bands, modulated by visual cues, was also derived by our
pipeline in both left- and right-hand movement. The beta and alpha os-
cillations engaged in the visual networks were observed. Accumulating
evidence has shown that information is sampled periodically at low
frequencies (theta: 4–7 Hz and alpha: 8–12 Hz). Specifically, the alpha
and theta rhythms seem to coexist in the brain and support different
functions (Dugu�e and VanRullen, 2017; Dugu�e et al., 2017). If alpha has
been related to an ongoing, sensory rhythm, theta appears related to
attentional exploration of the visual space (Senoussi et al., 2019). This
theta-specific primary visual network was not obvious in the ICA-based
study (O’Neill et al., 2017), where the data were filtered into beta
bands (13–30 Hz) before calculating connectivity. Thus, the ICA-based
study failed to derive the visual network during the movement task
(O’Neill et al., 2017). We also validated our pipeline by comparing one of
the results from the hand movement (see Fig. S1), with the permutation
test procedure (Maris and Oostenveld, 2007). These results validate our
proposed pipeline by identifying the sensorimotor connectivity with
enhanced beta frequency modes, modulated by movements, and a
theta-specific visual network modulated significantly by visual cues.

In the working memory task, the formation of networks including
visual and sensorimotor regions with distinct spectral modes is consistent
with the presentation of visual stimuli and execution of the motor
response (O’Neill et al., 2017; Woodward et al., 2013; Yamashita et al.,
2015). A modulation in the theta band was also observed. Numerous
studies demonstrated that human theta can be engaged in the
working-memory task and the synchronized theta oscillations might be
coordinated by working-memory task (Raghavachari et al., 2006). Nodes
in the occipital lobe typically include the lateral fusiform gyrus which is
specialized for perception of faces (Dima et al., 2018; Elbich et al., 2019).
Networks of connectivity from the posterior superior temporal sulcus to
both the right occipital face area and the right fusiform face area, with
specific beta modes, emerged during the presentation of the face exam-
ples, which is in line with a recent study (Elbich et al., 2019). Other
frequency-specific networks encompass brain regions that are considered
to be important for the higher-order cognition needed for successful
completion of the working memory task. Enhanced alpha (8–14 Hz) ac-
tivity in broad brain areas, including the dorsolateral prefrontal cortex
(DLPFC), parietal and occipital regions, and superior temporal cortices, is
particularly evident in the majority of these networks. Many studies of
the neural oscillatory dynamics serving working memory processing
have implicated broad alpha rhythm activity in these brain areas as being
essential for task performance (Embury et al., 2019; Heinrichs-Graham
and Wilson, 2015). Particularly, the right DLPFC is recruited in network
IV connection with the right superior temporal sulcus, which is mainly
involved in theta frequency activity. Network VI also shows that the
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DLPFC is connecting bilaterally with the inferior superior temporal sulcus
in alpha frequency domain. It has been shown that the alpha oscillations
in the left and right DLPFC, widely known to play a cognitive and
attentional control function in working memory (Barbey et al., 2013;
O’Neill et al., 2017), synchronize temporally as a function of time during
decoding, maintenance, and retrieval phases (Heinrichs-Graham and
Wilson, 2015). Network VI incorporates bilateral inferior temporal gyri
regions considered important for semantic processing, which has been
referred to as a semantic network (O’Neill et al., 2017). This
alpha-specific network was also observed in a previous study, in which
the connectivity between the DLPFC and ventral visual regions varied
with cognitive load in a working memory task (Barbey et al., 2013;
O’Neill et al., 2017; Popov et al., 2018). Another cognitive network VIII
with spectral mode peaking in 10 Hz was also identified and termed the
language network by other researchers (O’Neill et al., 2017). According
to previous studies, working memory is more efficient for social infor-
mation than for nonsocial information (Thornton and Conway, 2013).
Participants could use the strategy of chunking or verbal labeling to
enhance working memory performance for social information. Indeed,
this left-lateralized network is anchored in the angular gyrus with ex-
tensions to the inferior frontal gyrus, inferior temporal gyrus, and a
number of nodes spanning the inferior to superior precentral gyrus.
These regions are consistent with previous accounts of semantic cogni-
tion (O’Neill et al., 2017). Overall, the transient frequency-specific net-
works elicited by 2-back working memory task are plausible given the
previous studies on working memory and sensory processes.

The proposed analysis framework can identify the spectral, temporal,
and spatial patterns of the electrophysiological networks that are tran-
sient form and dissolve during task performance. In doing so, several key
points should be considered while interpreting the results generated by
our pipeline. It should be noted that there is significant variability in the
temporal courses of frequency-specific connectivity across subjects since
temporal resolution is on the timescale of milliseconds; this variance is
exhibited in the average time courses across subjects. For example, the
low-level visual network is highly synchronized across subjects during
the presentation of the image example. Thus, the individual temporal
change of this visual network was similar and did not jitter in all subjects,
which was demonstrated by the fact that the peak of the average time
course would be far greater than the null distributions (gray shaded
areas) and the duration of the above null distributions would be very
short (thin curve; see Fig. 4 II). The time courses of motor network time-
locked button presses fluctuated across subjects; thus, the duration of the
above null distributions of the time courses would be long, showing the
time-locked temporal change jittered across subjects (see Fig. 4 III).
Although relatively poor between-subject reproducibility of MEG con-
nectivity measurements has been demonstrated (Colclough et al., 2016;
Wens et al., 2014), our framework still allows detection of the
quasi-time-locked temporal change in frequency-specific networks using
large cohorts during task performance. In addition, we perform tensor
factorization on the time-concatenated three-way tensor form, where the
underlying spatial connectivity patterns and the frequency mode are
common to all subjects while each subject has its own temporal courses.
Then the individual time courses were averaged across subjects to
identify components modulated by task. This less-relaxed assumption
could discard some components possibly involved in the task due to the
inter-subject differences. In other words, the task-modulated temporal
patterns of some components would be diminished due to inter-subject
variability of the task-induced response. For example, in the movement
task, some networks involving the somatomotor cortex with alpha
dominant spectrum (see. Fig. S5 Ⅳ, XI and XII) show modulations of
connectivity which seem to be related to the stimulus despite the tem-
poral courses below the threshold. Future work should therefore seek
other strategies to not only consider the inter-subject synchronization but
also the inter-subject variability. Actually, this assumption for MEG
connectivity study has also been introduced in previous studies (O’Neill
et al., 2017; Vidaurre et al., 2018). For example, O’Neill et al. applied ICA

to the time-concatenated adjacency matrix calculated by the envelope
correlation to character temporal dynamics of networks (O’Neill et al.,
2017), where all subjects share common spatial connectivity patterns but
have different temporal courses. In fact, the connectivity within several
well-known distributed networks is stable even though their temporal
variability is significant across subjects. However, the temporal courses
of connectivity networks may be similar among subjects when per-
forming the same repeated task. An alternative method is to apply tensor
decomposition to a fourth-order tensor with time, frequency, connection,
and subject modes, to examine the specificity of subjects (Pester et al.,
2015). This will be one of our future study directions.

In addition, we here used the wPLI (phase-based method) as a means
of quantifying the connectivity. Since phase reflects the timing of
population-level activity, it can be conceptualized as a “functional
configuration” or a “functional state” (Cohen, 2014). However, the
phase-coupling-based methods might be non-sensitive to the induced
synchronization (e.g. beta event-related synchronization in
post-movement). The envelopes of band limited oscillations metrics have
been proved to detect fluctuations of connectivity during the well-known
post-movement beta rebound (Seedat et al., 2020; Tewarie et al., 2019a;
Vidaurre et al., 2016). Another limitation is that we only considered the
low-frequency coupling (1–48Hz). There is enough evidence that the
high frequency rhythms are important to understand transient coherent
functioning in the brain in other fields as epilepsy or vision (Jensen et al.,
2007; J.-P. Lachaux, Axmacher, Mormann, Halgren and Crone, 2012;
J.-P. Lachaux et al., 2005). However, we here only considered the
width-band signal since we assume no prior knowledge about which
frequency bands are dominant. This would result in failing to extract the
high-frequency coupling by tensor decomposition since the
low-frequency signal were dominate in the working memory task. It
would be better to examine the high-frequency coupling by tensor
decomposition separately for those researchers who are interested in the
high-frequency activity.

Another consideration in the application of tensor decomposition is
the selection of the number of components. Choosing the number of
components is not a limitation of our algorithm directly, but rather is a
challenging and fundamental problem for all tensor-based methodolo-
gies. In this study, we performed an empirical study using a range of
numbers of components for tensor models and applied the DIFFIT
method to determine the optimal number of components. In addition, we
also tried other numbers, showing that varying this parameter in our
current work made little difference to the overall results. It should also be
noted that the components were retained based on the fact that their
temporal dynamics were modulated significantly by the task. However, if
a network does not show significant modulation with the task, it does not
simply mean that this network is not genuinely representative of con-
nectivity. If the current pipeline is applied for a resting-state study, other
techniques should be considered to validate the extracted networks.

5. Conclusion

The characterization of electrophysiological brain networks based on
the phase synchronization of spatially separate brain regions, which are
transient and dynamic on the timescale of milliseconds, in order to
support specific cognitive tasks, is one of the important challenges in
cognitive neuroscience. In this paper, we propose a TCA-based pipeline to
describe temporal, spectral, and spatial signatures of such dynamic brain
networks using MEG data. We applied CP decomposition to a third-order
tensor formed by time-frequency domain phase-coupled connectivity, to
extract three interacted, low-dimensional descriptions of connectivity
data, including a connectivity factor reflecting spatial pattern, a temporal
factor reflecting rapidly temporal evolution of the functional networks,
and a spectral factor reflecting frequency modes of networks. The pro-
posed framework allows us to identify the temporal dynamics of phase-
coupled networks in specific spectral modes in a completely data-
driven way. We validated our pipeline in a simulation and a simple
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motor task, successfully identifying a beta-specific sensorimotor network
during finger movement and a theta-specific visual network modulated
by visual cues. We also used the proposed pipeline with a relatively
complex task (2-back working memory task) showing transient reconfi-
guration of electrophysiological brain networks on the timescale of
milliseconds. These findings demonstrate that the proposed framework
seems valuable in the characterization of electrophysiological brain
network connectivity.
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Appendix. Validation by simulation

The validation of our proposed pipeline provided in this manuscript focuses on its application to real MEG dataset. However, our pipeline also has
been validated by simulation data. The performance of the wPLI as a measure of connectivity in source level has been addressed well in previous
publications (Palva et al., 2018), and we will not examine its performance repeatedly here. However, the ability of tensor factorization (CP decom-
position in this paper), applied to connectivity in a time-frequency domain, to explore the temporal, spectral and spatial features of functional networks
has not been tested. In the current study, we validated the ability of tensor factorization by performing CP decomposition on a third-order tensor formed
by a set of simulated brain networks.

Simulation methods

We firstly used the outer product of three predefined factors, temporal, spectral, and connection factors, to generate a simulated adjacency tensor
Qsim as the ground true connectivity networks. A noise (bandwidth:1–48 Hz) tensorN sim with same dimensions was added to form a synthetic adjacency
tensor Psim. It can be represented by

Psim ¼Qsim þ N sim ¼
XJ

j¼1

ajsim ∘ bjsim ∘ cjsim þN sim

where ajsim, b
j
sim and cjsim represented connectivity factor, spectral factor and temporal factor of the j-th component. Here, three spatially distinct con-

nectivity patterns were constructed based on a previous study (O’Neill et al., 2017). The spatial factors of connectivity, including visual, sensorimotor,
and fronto-parietal networks, were separately represented by an adjacency matrix (see Fig. A1). Their temporal and spectral signatures were
demonstrated in Fig. A1. The temporal factors were constructed by 4000 ms of Hanning windows. We set the amplitude to unit length 1, and the full
width half maximum to 200 ms, and their onsets were set to 150, 300, and 500 ms. The spectral factors were constructed by filtering white noise with
bandwidth centered at 5 Hz, 12 Hz, and 20 Hz. The outer product of temporal factors, spectral factors, and connectivity factors (vectorized adjacency
matrices) was performed to adjacency tensorQsim. The noise tensorN sim was constructed by source reconstructing recorded empty roomMEG data (also
provided by HCP) onto a simulated brain geometry. The wPLI was calculated based on the methods described in this paper. Noise tensorN sim effectively
represented connectivity networks of interest.

In order to test the ability of tensor analysis to extract interpretable descriptions including spectral, temporal, and spatial connectivity signatures of
brain networks under noise, we tested the performance in the presence of different noise-levels and defined a similarity merit to characterize howwell a
single component with their three factors represented the simulated temporal, spectral, and spatial connectivity of a network. We also tested the impact
of selection of the frequency on the separation in simulation. The bandwidth of noise varies from 1 Hz to B (B 2 ½30; 100 Hz�) with fixed SNR ¼ 0 dB.

Temporal similarity: For each component, we calculated the correlation coefficients between its temporal factor and all the true time courses of the
three simulated networks. We thought of the maximum correlation coefficient as the best-matching simulated networks. The temporal similarity was
defined as the mean of maximum correlation across all the components.

Spectral similarity: Similar to temporal similarity, we calculated the correlation coefficients between the spectral factor of each component and all
the true spectrum of the three simulated networks. The max correlation coefficient was considered as the best matching simulated networks. The
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spectral similarity was defined as the mean of this maximum correlation across all the components.
Connected similarity: We also calculated the correlation coefficients between connect factor of each component and all the true adjacency matrices

of the three simulated networks. The max correlation coefficient was considered as the best-matching simulated networks. The connected similarity was
defined as the mean of this maximum correlation across all the components.

Simulation results

Fig. A1 demonstrates the temporal, spectral, connectivity factors of simulated and reconstructed networks. To test the performance of the CP
decomposition, we ran this analysis 20 times under different noise levels, between �35 dB and 25 dB in steps of 2 dB, and calculated the mean of
temporal, spectral and connected similarity across runs with varying the signal to noise ratio (SNR) of the simulated data. As expected, the figure of
similarity was high at high SNR, meaning that our simulated networks are reconstructed successfully (Fig. A2B). However, a sharp transition below a
minimum threshold SNR was observed, at which the similarity merits were very low and simulated networks were unrecoverable. As can be seen, a
different threshold value can be found for the temporal, spectral, connectivity factors and they were estimated successfully after�5 dB SNR. Fig. A2. C)
demonstrated the similarity merits against bandwidth. As can be seen, the widths of band have little effect on the separation.

Fig. A1. Simulation results. Left: Simulated networks. Right: Reconstructed networks. Row I: Theta-oscillatory frontoparietal network forming in 1 s after onset. Row
II: Alpha-oscillatory visual network forming around 2 s after stimuli onset. Row III: Beta-oscillatory network forming around 3 s after stimuli onset.

Fig. A2. A) Fit values as number of components. This plot unambiguously reveals J ¼ 3 against the true number of components in the simulated data, in agreement
with the ground truth. B) Similarity merits against SNR. As the SNR increases, similarity of three factors becomes higher and higher. After around �5 dB SNR, they can
be reconstructed from data with a high accuracy. C) The similarity merits against bandwidth.
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