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Abstract— Recent studies show that the dynamics of
electrophysiological functional connectivity is attracting
more and more interest since it is considered as a bet-
ter representation of functional brain networks than static
network analysis. It is believed that the dynamic elec-
trophysiological brain networks with specific frequency
modes, transiently form and dissolve to support ongoing
cognitive function during continuous task performance.
Here, we propose a novel method based on tensor compo-
nent analysis (TCA), to characterize the spatial, temporal,
and spectral signatures of dynamic electrophysiologi-
cal brain networks in electroencephalography (EEG) data
recorded during free music-listening. A three-way tensor
containing time-frequency phase-coupling between pairs
of parcellated brain regions is constructed. Nonnegative
CANDECOMP/PARAFAC (CP) decomposition is then applied
to extract three interconnected, low-dimensional descrip-
tions of data including temporal, spectral, and spatial con-
nection factors. Musical features are also extracted from
stimuli using acoustic feature extraction. Correlation analy-
sis is then conducted between temporal courses of musical
features and TCA components to examine the modulation
of brain patterns. We derive several brain networks with
distinct spectral modes (described by TCA components)
significantly modulated by musical features, includ-
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ing higher-order cognitive, sensorimotor, and auditory
networks. The results demonstrate that brain networks
during music listening in EEG are well characterized by
TCA components, with spatial patterns of oscillatory phase-
synchronization in specific spectral modes. The proposed
method provides evidence for the time-frequency dynamics
of brain networks during free music listening through TCA,
which allows us to better understand the reorganization of
electrophysiological networks.

Index Terms— Tensor decomposition, frequency-specific
brain connectivity, freely listening to music, oscillatory
coherence, electroencephalography (EEG).

I. INTRODUCTION

THE electrophysiological network, characterized by neu-
ronal synchronization between spatially separate brain

regions, plays an important role in the human cogni-
tion [1], [2]. Such neuronal-synchronized networks are tran-
sient and dynamic, established on the specific frequency modes
in order to support ongoing cognitive operations [3]–[7]. The
characterization of the functional networks during resting state,
referred to as resting-state brain networks (RSNs), has been
widely studied during past few decades [8]–[10]. Recently,
growing interest has been directed to probing the reorgani-
zation of brain functional networks during naturalistic stim-
uli [11]–[13] and a strong relationship between the functional
networks during resting state and continuous task performance
has been demonstrated [14], [15]. For example, Alavash and
colleagues found that functional networks in challenging lis-
tening situations showed higher segregation of temporal audi-
tory, ventral attention, and frontal control regions, compared
to resting state [13]. Alluri et al. explored the neural correlates
of music features processing as it occurs in a realistic or
naturalistic environment [16], [17]. However, those functional
connectivity studies have been based on functional magnetic
resonance imaging (fMRI), which is indirect assessments of
brain activity. Actually, little is known about how oscillatory
basis is involved in the brain network activity during music lis-
tening. In this paper, we develop a tensor-based method which
allows us to characterize the spatial, temporal, and spectral
signatures of electrophysiological brain network connectivity
using electroencephalography (EEG) recorded during freely
listening to music.

Tensor component analysis (TCA), as a well-established
tool for signal processing and machine learning [18]–[20],
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has shown to be powerful for neuroimaging data processing
and analysis in cognitive neuroscience [21]–[26]. A tensor
is a multi-dimensional representation of data or a multi-way
array. Each dimension in the tensor is called a way or mode.
For a matrix, a two-way array, matrix decomposition (e.g.,
independent component analysis, ICA) can be used for data
processing. Analogously, for a tensor, tensor decomposition
(or TCA) is able to be applied as well. TCA can reveal the
true underlying structure of multi-way data and explore the
interactions among multiple modes. For instance, TCA-based
methods have been successfully applied to EEG data which
is in general represented in time, frequency, and space [23].
In fMRI studies, the tensor modes could correspond to vox-
els, time, and patients [27]. In neurophysiological studies,
the different modes could span neurons, time, and trials [28].
TCA can unsupervised uncover the main features of the
neuroimaging data and extract low-dimensional descriptions
of the big data. Several TCA-based modes have been used
for decomposition and extraction of multi-way representation
of data. The CANDECOMP/PARAFAC (CP) [29] is one of
the fundamental models for tensor decomposition, which is
a generalization of singular value decomposition (SVD) to
higher-order tensor. TCA with CP model decomposes the
multi-dimensional data into sum of rank-1 tensors of lower
dimensions. Therefore, it can be applied to extract multi-
interconnected and low-dimensional descriptions of original
data. For example, performing TCA to the time-frequency
transformed multi-channel EEG tensor, three interacted low-
dimensional descriptions of data are extracted, including
temporal factor representing temporal evolution of the oscilla-
tory source, spectral factor representing oscillatory frequency,
and the spatial factor representing location of the oscillatory
source [30]. It should be noted that time-frequency representa-
tion of EEG data is usually nonnegative and CP decomposition
with nonnegative constraints is adopted. Previous TCA-based
studies of brain connectivity mainly focused on the aim of
detection of change points [31]–[34] and spatial-temporal
properties of the network community [35]–[37]. The spectral
mode of brain networks was not considered especially for
the fMRI neuroimaging data. Thus, these studies failed to
examine the underling spectral mode of oscillatory networks.
However, dynamics of large-scale networks during task perfor-
mance have been shown to fluctuate across different frequency
bands [6], [38]. For example, using magnetoencephalography
(MEG), self-peace motor task studies demonstrated that the
motor networks measured by the correlation of band-limited
power is dominant in beta band [38], [39]. Further, few
studies have attempted to explore spectral patterns of the brain
functional connectivity during continuous task performance.

In this paper, we examined the spatio-temporal-spectral
modes of covariation among separate regions in the listening
brain. We recorded the EEG data during freely listening to
music. Source-level data was obtained by source localiza-
tion based on minimum-norm estimate. We then computed
the time-frequency domain connectivity between all pairs of
separate brain regions predefined though cortical parcella-
tion, based on a sliding window technique. We used the
weighted phase lag index (wPLI) as a metric to quantify

the brain connectivity since it is insensitive to signal leakage
and similar bias effects [40], [41]. We were able to obtain
an adjacency matrix for each time window and frequency
point. We reshaped the upper triangular parts of adjacency
matrix into a vector. We then constructed a three-way tensor
containing time, frequency, and connectivity modes for each
subject. We performed CP decomposition on the temporal-
concatenated adjacency tensor for multi-subjects. It should
be noted that it is distinct from our previous study [5],
where CP decomposition was applied to time-frequency rep-
resentations of source-level EEG data. In the present study,
we extracted low-dimensional, spatio-temporal-spectral modes
of covariation including connectivity factor reflecting network
community, temporal factors reflecting temporal evolution of
functional networks and the spectral factors reflecting spectral
features of networks. Time series of five long-term acoustic
feature were extracted from the audio stimuli by music infor-
mation retrieval techniques used in previous studies [17], [42].
Finally, we analyzed the correlation between temporal courses
and the musical feature time series to identify frequency-
specific brain networks modulated by musical features.

II. MATERIAL AND METHODS

A. Data Description

We used EEG data of 14 right-hand adults aged
20 to 46 years old. None of them reported hearing loss or his-
tory of neurological disease. No participants had musical
expertise. This study was approved by the local ethics commit-
tee. During the experiment, participants were presented with
a music played through audio headphones. This music was a
512 s long musical clips of modern tango, which had suitable
duration for the experimental setting due to its high range
of fluctuation in several musical features [17]. EEG data were
recorded at a sampling rate of 2048 Hz with BioSemi electrode
caps of 64-channels while participants were freely listening to
musical clip.

Here, we examined five acoustic features including tonal
and rhythmic features. They were extracted by applying a
frame-by-frame analysis technique [17], [42]. The length of
each frame was set as 3 seconds and the overlap between
adjacent frames was set as 2 seconds. Thus, one temporal
course with 510 samples was created for each musical feature
with a sampling rate of 1 Hz. The five acoustic features consist
of two tonal musical feature, Mode and Key Clarity, and three
rhythmic features, including Fluctuation Centroid, Fluctuation
Entropy and Pulse Clarity. Mode denotes the strength of
major or minor mode. Key Clarity represents the measure
of the tonal clarity. Fluctuation Centroid is defined as the
geometric mean of the fluctuation spectrum, indicating the
global repartition of rhythm periodicities within the range
of 0–10Hz [17]. Fluctuation entropy is the Shannon entropy of
the fluctuation spectrum, representing the global repartition
of rhythm periodicities. Pulse Clarity naturally estimates the
clarity of the pulse.

B. Preprocessing and Source Reconstruction

We re-referenced EEG data using common average elec-
trodes. We visually inspected for rejecting artifacts and bad
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Fig. 1. Analysis pipeline. EEG data were recorded during freely listening to music. Source-reconstructed data were divided into 68 ROIs based on
anatomical brain regions. Each windowed signal was transformed with a Morlet wavelet and wPLI was calculated between all pairs of ROIs. For each
time window and frequency-point, an adjacent matrix was thus obtained. Then a three-way tensor was formed including spectral mode, temporal
mode, and spatial connectivity mode (vectorized using upper triangular parts of an adjacent matrix). Nonnegative CP decomposition was applied
to the temporally concatenated tensor across subjects. On the other hand, musical features were extracted using acoustic feature extraction. The
temporal courses of decomposed components and musical feature time series were analyzed to examine the modulated brain networks.

channels were interpolated with mean value of their spherical
adjacent channels. A 50 Hz notch filter was applied to remove
powerline interference. High-pass and low-pass filters with
2 Hz and 35 Hz cutoff were then used since our previous
investigation of the frequency range uncovered that no useful
information was observed in higher frequencies [12], [42].
The data were finally down-sampled to 256 Hz. Independent
component analysis (ICA) was performed on individual EEG
data to remove EOG (e.g. eye blinks) [43]. A schematic of the
subsequent data processing is demonstrated in Fig. 1. Follow-
ing data preprocessing, the forward model and inverse model
were computed using a MATLAB toolbox Brainstorm [44].
The symmetric boundary element method (BEM) was used
to calculate the forward model with a default MNI MRI
template (Colin 27). To solve the inverse model, weighted
minimum-norm estimate (wMNE) [45] was applied, which
is well-suited for estimation for brain connectivity since it
takes the volume conduction into consideration and reduces
single leakage [3]. The source orientations were constrained
to be normal to the brain cortical surface when calculating
the inverse problem. Then, the cortical surface was parcellated
into 68 anatomical regions based on the Desikan-Killiany Atlas
(DKA) [46]. In order to obtain a representative time series for
every region, the center of mass of each region was defined as
seed voxel and used as a single representative location. Thus,
for each subject, a source-level data matrix P was created with
dimension nn×ns , where nn = 68 represents the number of
anatomical regions and ns represents the number of samples.

C. Dynamic Functional Connectivity Estimation
We attempt to examine the time-frequency dynamics of

brain functional connectivity. This means that we require

estimating connectivity between all pairs of DKA regions,
as a function of time and frequency using a sliding-window
technique [47], [48]. Firstly, source space data matrix P was
segmented by overlapping time window. A single window data
is denoted as Pw with dimensions nn× f τ . Here, w represents
window number, τ denotes the window length in seconds and
f is sampling frequency. Hamming-window with τ = 3s
and 2 s overlap of adjacent windows were set, resulting in a
sampling rate of 1 Hz in temporal dimension. This sampling
rate was in line with musical feature time series.

To calculate phase-coupling between all pairs of regions
in frequency domain, spectral densities should be estimated.
We applied continuous wavelet transform with Morlet wavelets
to the segmented data Pw. The Morlet wavelet contained
3 cycles at the lowest frequency (2 Hz) and the number of
cycles was increasing up to 12 cycles at the highest frequency
(35 Hz). This resulted in 42 linearly spaced frequency points.
A four-way tensor was thus obtained with dimensions nn ×
nm × n f × nw, where nw = 512 denotes the number of
windows, n f = 42 is the number of frequency point and
nm = f τ is the number of samples in a single window.

Weighted phase lag index (wPLI) is defined as the sign
of the phase difference between two signals weighted by
the magnitude of the imaginary component of the cross-
spectrum [41]. It is computed as

wP L I ( f,w) = |
∑ f τ

t=1 im
(
Sw

1 ( f, t) Sw∗
2 ( f, t)

) |
∑ f τ

t=1 | im
(
Sw

1 ( f, t) Sw∗
2 ( f, t)

) |
, (1)

where Sw
1 ( f, t) and Sw

2 ( f, t) are wavelet-decomposed time-
frequency representations from DKA region 1 and region
2 respectively, and segmentation w. ∗ means the complex
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conjugate, im( ) represents the imaginary part of a complex
value, | | is an absolute value operation. Note that wPLI here
descripts the degree of phase synchronization between regions
in a period of time (τ = 3 s). After calculation of wPLI, for
each subject, a three-way tensor containing connections Q was
generated with dimensions nc× nw× n f , where nc = 2278 is
the number of pairs of regions (68∗ (68−1)/2). Finally, these
three-way tensors Q were temporally concatenated across
subjects, resulting in a group-level tensor X with dimensions
nc × nwn p × n f , where n p is the number of subjects.

D. Learning Underlying Brain Networks via
Tensor Decomposition

CP model, as a fundamental model for TCA, decomposes
a tensor into multiple components through a high-order sin-
gular value decomposition. It has found many applications in
several fields, especially for signal processing and machine
learning [18], [19]. Given a three-way tensor X∈R

nc×nt×n f
+

from constructed tensor containing connectivity, a rank-R
nonnegative CP mode factorizes X into R components, each
of which contains a rank-1 tensor produced by the outer-
product of 3 column vectors. It is generally solved through
the following minimization problem with Frobenius norm of
the error:

min
A,B,C

1

2

∥∥∥∥∥X −
R∑

r=1

Ar ⊗ Br ⊗Cr

∥∥∥∥∥

2

F

, (2)

where A = [a1, a2, · · · , aR], B = [b1, b2, · · · , bR], and C =
[c1, c2, · · · , cR] are called loading matrices or factor matrices.
Here, those loading matrices represent connectivity factor
matrix, spectral factor matrix, and temporal factor matrix
respectively. � �F represents Frobenius norm. ⊗ means
Kruskal operator. The estimated loading matrices with Kruskal
operator form can be written as the sum of R rank-1 tensors
with outer-product of column vectors form:

R∑

r=1

Ar ⊗ Br ⊗ Cr =
R∑

r=1

ar ◦ br ◦ cr , (3)

where, ar , br , and cr character the spatio-temporal-spectral
property of underling brain pattern. ar can be considered as
spatial topology of brain network pattern and br can be thought
of as spectral mode of brain network pattern across oscillatory
frequency. These spatial topology factors and spectral factors
form structure that is common across time, which can be
termed as frequency-specific brain network connectivity. The
last set of factors cr represent temporal factors of the underling
brain pattern, which describes the temporal dynamic of such
frequency-specific brain network connectivity. Since values of
wPLI are nonnegative, we add a nonnegative constraint to
Eq. (2), ar ≥ 0, br ≥ 0, cr≥ 0.

There are many optimization algorithms for CP decom-
position with nonnegative constraint, such as multiplicative
updating (MU) method, alternating least squares (ALS) and
hierarchical alternating least squares (HALS) [49]. Here,
we apply ALS due to its good performance and fast speed
on convergence. The ALS algorithm applies a gradient descent

method to solve the minimization problem in Eq (2) iteratively.
At each iteration, one factor matrix is updated while other two
matrices are fixed. For brief illustration, consider estimating
spatial topology matrix A, fixing spectral factor matrix B, and
temporal matrix C , which resulting in the following update
rule:

A← arg min
A

1

2

∥∥∥∥∥X −
R∑

r=1

ar ◦ br ◦ cr

∥∥∥∥∥

2

F

. (4)

It can be estimated as a linear least-squares problem and
has a closed-form solution. The solution of CP model using
ALS algorithm is available in many open source tool-
boxes [50], [51].

E. Selection of Component Number
All TCA-based method for learning hidden data struc-

tures require determining the number of components either
manually or via criteria such as DIFFIT method [52]
and CORCONDIA method [53]. Indeed, DIFFIT and
CORCONDIA measure the change of the data fitting (i.e.
explained variance of the original data) and the core tensor of
the decomposition among a number of models, respectively.
It should be noted that the number of components R can be
chose with a larger number than the minimization of each
model size, which is not restricted by the size in each mode
since the rank of tensor can be even larger than the max of each
model size [29]. Here for simplicity, we use DIFFIT method to
choose the number of components. DIFFIT, the difference in
data fitting, is computed based on model reconstruction error
and the explained variance of data [52], [54]. Let component
number R ∈ [1,R], where R is the empirically maximal
number of latent components. The data fit can be obtained as

Fit (R) = 1−

∥∥∥∥X −
R∑

r=1
a j ◦ b j ◦ c j

∥∥∥∥
F

�X�F
. (5)

Unlike PCA, the estimation of TCA may have local minima
(suboptimal solution), and not guarantee that optimization rou-
tines will converge to the global optimal solution. Thus, we run
ALS optimization procedure at each component number R
20 times from random initial conditions. We then average data
fits across many runs, resulting in averaged data fit Fit(J ).
The change fit of two adjacent data fit is

DIF (R) = Fit(R)− Fit (R − 1) . (6)

Next, the ratio of the adjacent difference fits is defined as

DIFFIT (R) = DIF (R)

DIF (R + 1)
. (7)

Generally, the candidate model R̃ with largest DIFFIT value is
thought of as the appropriate model order of TCA for original
tensor.

F. Modulation of Temporal Evolution by Musical Features
How does music modulate frequency-specific brain net-

works during real-world? We address this question for each
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Fig. 2. Results for simulation. Left: the temporal, spectral, and spatial connectivity modes of three synthetic brain network patterns. Right:
corresponding spectral and spatial connectivity modes of reconstructed brain patterns.

musical feature, temporal courses of brain networks (compo-
nent) and subject. We aim to undertake a correlation analysis
between temporal profile and musical time series, through
evaluating the statistical significance of correlation based
on a surrogate permutation procedure [55]. We obtained R̃
TCA components with three factors, charactering the tempo-
ral evolution, spectral mode, and spatial topology of brain
networks. The temporal factor matrix C (with dimensions
nwn p × R̃) was firstly reshaped into a three-way tensor C
(with dimensions nw×n p × R̃), which includes individual
temporal course for each component. For each component
and each subject, we computed the correlation coefficient
between each musical feature time series and temporal course
as the modulation score. We then determined which com-
ponent was significantly modulated by testing whether its
modulation score was significantly different from the scores of
surrogate data. The surrogate data were generated by a phase-
randomization procedure [56], which rotated the intrinsic
phase and preserved the properties of the temporal course
in the spectral domain. We repeated the phase-randomization
procedure 5000 times for each component. We calculated the
correlation coefficient between musical feature time series and
phase-randomized temporal courses to obtain a distribution of
surrogate modulation scores. The 95th percentile (pcorrect =
0.05) of surrogate modulation scores was selected as the
threshold (control modulation scores for comparation) for
each subject. Finally, for each component, we performed two-
tailed t-tests for modulation score of each musical feature
to determine which component (brain network pattern) was
modulated significantly differently (at pcorrect = 0.05 level)
from the defined thresholds.

III. RESULTS

A. Simulation Results

We firstly validated the proposed method using simulation
data, which proved instructive to examine the performance
of the methodology. The performance of wPLI, as a measure

to examine functional connectivity in source space, has been
validated well in previous study [40]. Thus, we here will not
examine the performance of wPLI repeatedly. We only tested
the ability of TCA, applied to time-frequency connectivity
data, to character the temporal, spectral, and spatial changes in
electrophysiological brain network over time scales of minutes.

We constructed an adjacency tensor Ssim using outer
product of temporal, spectral, and spatial topology fac-
tors of predefined true sources. The synthetic adjacency
tensor was generated by Msim = Ssim + N sim =

R∑
r=1

ar
sim ◦ br

sim ◦ cr
sim +N sim , where N sim is a noise tensor

with dimensions same as Ssim . Three distinct brain network
patterns were predefined based on a previous work (R = 3),
which consists of visual, sensorimotor, and fronto-parietal
networks with distinct spectral modes [39]. Their temporal,
spectral, and spatial topology profiles were shown in Fig. 2.
Temporal factor matrix was constructed with triangle, square,
and sine waves and spectral factor was composed of peaks
at 5 Hz, 12 Hz and 25 Hz. We here demonstrated the results
under the signal to noise ratio (SNR) of 10dB. As can be seen,
the three underling true brain patterns with distinct temporal-
spectral-spatial modes were successfully extracted using TCA.

B. Results From Music-Listening EEG Data

Figs. 3 and 4 demonstrate the identified brain network pat-
terns (TCA components) during music listening: their spectral
and spatial topology (connectivity) profiles, as well as their
modulation by five musical features. The modulation score was
averaged across subjects. Here, 25 components were extracted
by CP decomposition according to DIFFIT method (See
APPENDIX), and we presented 9 components that shown sig-
nificant musical feature modulation. We observed two bilateral
frontal functional networks, referred to as anterior higher-order
cognitive brain networks in accordance with previous litera-
ture, but with distinct spectral modes (Rows I and II of Fig. 3).
One of them is dominated by low-frequency oscillations
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Fig. 3. Results for music-listening data. A. The modulation scores for each musical feature are computed from temporal course and averaged
across subjects. Error bars represent standard errors of mean. An asterisk indicates that the component is modulated significantly differently from
surrogate data. B. The spectral profiles are obtained from the spectral factor matrix. C. The circular phase-coupling plots and the 3D visualization of
the connectivity profiles. Each node/dot represents one brain region. I. Anterior higher-order cognitive network with dominant delta/theta frequencies.
II. Beta-specific higher-order cognitive network. III &IV. Language-related network with distinct spectral modes. V. Beta-specific motor network.

(Delta and Theta rhythms, 3-8 Hz) and another is centered
at Beta rhythm (20-30 Hz). The regions involved by the two
anterior higher-order cognitive networks are part of the default
mode network (DMN), which here contains temporal poles,
the ventromedial prefrontal cortex and posterior cingulate cor-
tex. They are individually modulated by Fluctuation Centroid.
Row III of Fig. 3 shows a 10 Hz unilateral functional networks,
which mainly involves Broca’s arears and temporal poles that
are often associated with semantic integration. This brain pat-
tern is significantly modulated by Fluctuation Entropy. Row IV
of Fig. 3 shows a strong connectivity between temporal lobe
and the frontal regions with a Beta-specific spectrum, which

is significantly modulated by Pulse Clarity. We also found
a Beta-specific sensorimotor component (Row V of Fig. 3),
which involves regions including motor areas and is modulated
by Fluctuation Entropy.

Fig. 4 demonstrates several brain connectivity networks
mainly associated with auditory regions. The neural oscil-
lations involved are dominated by Beta rhythm. Row I of
Fig. 4 shows a bilateral temporal connectivity networks but
no connections between left and right. The Beta rhythm was
involved in this connectivity and it was modulated by Pulse
Clarity. Rows II and III show strong connections between left
temporal regions and right temporal regions with high-Beta
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Fig. 4. Auditory-involved networks. I. Left and right temporal connectivity networks with dominant coherence in Beta range. II &III. Left to right
temporal arears connections. IV. Alpha-specific right temporal network.

and low-Beta spectral modes. The temporal course of brain
pattern in Row II is modulated by Fluctuation Centroid, as
well as in Row III is modulated by both Fluctuation Centroid
and Fluctuation Entropy. Row IV demonstrates connections
between right temporal regions and left parietal regions. Its
neural oscillations are dominated by Alpha rhythm (Peaks at
10 Hz) and its temporal course is significantly correlated with
Fluctuation Centroid and Pulse Clarity.

IV. DISCUSSION

In this paper, we introduced a TCA-based approach applied
to EEG data, which allows us to characterize the time-
frequency dynamics of electrophysiology networks during
naturalistic music stimuli. We constructed a three-way tensor
containing temporal evolution of frequency-specific functional
connectivity in source space and used CP decomposition to
extract the low-dimensional descriptions of brain networks.
Using the proposed method, we extracted large-scale brain
networks during freely listening to music, which was described
by TCA components. Such TCA component, we refer to as
a brain pattern, was pictured with a distinct spatially and
spectrally defined pattern of network activity across the set
of predefined-atlas regions spanning the whole brain. These

patterns of frequency-specific phase-coupling were observed
to be temporally modulated by musical feature time series
and corresponded to plausible functional systems, including
auditory, motor, and higher-order cognitive networks. As far as
the authors are aware, this is the first complete formulation of
an TCA-based approach for the analysis of electrophysiology
network dynamics using ongoing EEG in source space during
naturalistic and continuous music listening.

The two higher-order cognitive brain pattern (or networks)
involved a subdivision of the DMN regions. These subdivi-
sions had distinguishing features in different frequency bands,
with one exhibiting high coherence in the Delta/Theta range
(3–8 Hz) (Row I of Fig. 3) and the other showing a high
coherence in the Beta range (20-30 Hz) (Row II of Fig. 3).
The involved regions were composed of temporal poles,
the ventromedial prefrontal cortex, and posterior cingulate
cortex. Temporal poles are well believed to be related to
semantic integration [6], [57] and the ventromedial prefrontal
cortex is typically specialized for emotion regulation [58],
which shows strong connection with the posterior cingulate
cortex, a key region of the DMN [59]. Thus, the forming of
these connectivity patterns is plausible to understand semantics
expressed by music and induce related emotion during music
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listening. For the neural oscillations, previous studies reported
that cortical rhythm activity in the Beta range is related to
behavioral performance during music listening and associated
with predicting the upcoming note events [12], [60], which
confirms our results that the frontal high-order networks with
a high coherence in the Beta range emerged during music
listening. In addition, the Delta-specific high-order cognitive
network (Row I of Fig. 3) was also consistent with the
previous studies, which showed that oscillations in the Delta
played an important role in predicting the occurrence of
auditory targets [61]. Rows III and IV of Fig. 3 demonstrated
another two cognitive networks termed ‘language network’,
one of which was specific to Fluctuation Entropy with a
high coherence in Alpha band and another of which was
modulated significantly by Pulse Clarity with a high coherence
in Beta band. Previous studies revealed that brain functional
networks engaged in music processing has strict similarities
with that for language processing [62], [63]. Thus, the nodes
of the language network including Broca’s arears and the
superior temporal sulcus, may be implicated during contin-
uously listening to music. Recent spectral analysis techniques
also demonstrated frequency-specific neural activity during
processing language, where semantic and syntactic unification
involves the alpha and beta bands by stronger recruitment
of regions relevant for unification as indicated by the event-
related desynchronization [64]. This study thus supports our
findings that language network with strong coupling in alpha
and beta bands emerged. For the motor networks (row V
of fig. 4), it is believed that perception and execution of
actions are strongly coupled in the brain as a result of learning
a sensorimotor task, which facilitates not only predicting
the action of others but also interacting with them [16].
During music listening, a tight coupling emerges between
the perception and production of sequential information in
hierarchical organization [16], [65]. Brain regions associated
with motor networks may be involved due to the imitation
and synchronization during musical activities (e.g. ensemble
playing or singing). These networks involved in auditory areas
(Fig. 4) showed beta-specific modes, which play an important
function in music perception in agreement with previous
studies [12], [17], [60].

TCA and other tensor analysis methods have been exten-
sively examined from a theoretical perspective [29] and have
been found quite many applications for the multi-way neu-
roimaging data in cognitive research [22], [28], [66]. The
majority of studies have applied tensor decomposition to EEG
and fMRI data, most typically to examine differences over
subjects or time-frequency presentations of signals [23], [30],
[67]. However, we do not find many applications regarding
the characterization of temporal and spectral evolution of
coupling between brain regions. Such coupling, generally
termed functional connectivity, has been demonstrated tem-
poral non-stationarity, spatial inhomogeneities, and spectral
structure [38], [68]. It is natural to take into account the mea-
sure of time-frequency coupling between all pairs of regions
based on wavelet transform, yielding a big data in tensor
form with three modes corresponding to temporal course,
spectrum, and spatial connectivity topology. TCA or tensor

Fig. 5. The Fit, DIF, and DIFFIT curves in function of component R.

decomposition, as a simple extension of PCA, enables
to process such high-dimensional data and extract low-
dimensional components describing the interactions among
modes. One of the key parameters for all TCA-based methods
is the determination of component number to be modeled,
which is less well prescribed and not a limitation of the pro-
posed approach directly. In this paper, we used DIFFIT method
to select the number of components. Note that DIFFIT pro-
vides a reference and instruction and is not able to accurately
estimate the underlying true number of tensor components.
We thus tried to vary this parameter (e.g., R = f rom20 to30)
in the current study and also observed the same networks
significantly modulated by musical features as R = 25.

In addition to parameter selection, another common con-
sideration is signal leakage through ill-posed inverse problem
causing spurious correlations between signals. Here, we used
wMNE algorithm, which is considered as an optimal source
localization method for functional connectivity analysis [3].
Additionally, wPLI was applied to measure the phase coupling
in time-frequency domain since it is insensitive to signal
leakage and similar bias effects [4]. Yet, it should be noted that
those techniques can only reduce the signal leakage problem,
not overcome it completely.

Another issue is that we have only used one piece of natural-
istic music stimuli to try to formulate an approach for analysis
of functional connectivity dynamics during real-world. This
work can be thought of as an exploratory study of neural
basis of brain network during naturalistic task performance.
Future work should adopt more musical clips and examine
the repeatability of results. It is also possible to study the
differences in brain network connectivity between resting state
and music-listening.

V. CONCLUSION

In this paper, we introduced a data-driven approach to
characterize the spatial, temporal, and spectral signatures of
electrophysiological brain networks at source level across
subjects during music listening. Previous studies have shown
that brain connectivity is temporally non-stationary, dependent
on frequency of oscillations and exhibit a degree of spatial
inhomogeneity. The majority of methods for brain connectivity
failed to examine the interactions among spatial, temporal,
and spectral modes. Here, we apply TCA to the adjacent
tensor constructed by time-frequency phase-coupling between
pairs of brain regions. By doing so, we extract brain networks
characterized by low-dimensional components with three fac-
tors. The temporal courses, representing the time evolution of
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frequency-specific brain connectivity, are analyzed by correla-
tion with time series of musical features extracted from music
stimuli. We firstly validate the proposed method in simulation.
Then we use it to the real EEG data recorded during free music
listening. The identified brain networks with distinct spectral
mode were in line with those previously published in the fMRI
and EEG studies. The proposed method seems valuable for
characterization of temporal and spectral evolution of coupling
between brain regions during freely listening to music or other
naturalistic stimuli.

APPENDIX

We run ALS optimization procedure at each component
number R 20 times from random initial conditions. We then
average data fits across many runs, resulting in averaged
data fit (Fig. 5.A). Subsequently, the DIF, and DIFFIT were
computed, as shown in Fig. 5.B. The DIT curve was smoothed
by polynomial curve fitting since it usually fails to provide
useful information due to fluctuations on DIF [30]. The two
local maximums on DIFFIT curve at R = 5 and R = 25
indicate two positions on DIF curve that have fast dropping
rate. Due to the low Fit value at the range R < 15, we selected
the local maximum R = 25 as the appropriate model order.

The data used in the current study are available from
the corresponding author on reasonable request and code to
reproduce the simulation presented in this paper is available
at https://github.com/yongjiezhu/CPforBrainConnectivity.
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